期刊文献+
共找到42篇文章
< 1 2 3 >
每页显示 20 50 100
基于改进SSD的水下目标检测算法研究 被引量:27
1
作者 强伟 贺昱曜 +2 位作者 郭玉锦 李宝奇 何灵蛟 《西北工业大学学报》 EI CAS CSCD 北大核心 2020年第4期747-754,共8页
随着人类对海洋的不断深入探索,准确、快速地检测水下环境中的鱼类、仿生体及其他智能体对完善水下防御体系显得越来越重要。针对水下复杂环境下目标检测准确率低、实时性差的问题,提出一种基于改进SSD的目标检测算法。该算法用ResNet... 随着人类对海洋的不断深入探索,准确、快速地检测水下环境中的鱼类、仿生体及其他智能体对完善水下防御体系显得越来越重要。针对水下复杂环境下目标检测准确率低、实时性差的问题,提出一种基于改进SSD的目标检测算法。该算法用ResNet卷积神经网络代替SSD的VGG卷积神经网络作为目标检测的基础网络,并在基础网络中利用所提出的深度分离可变形卷积模块进行特征提取,提高对水下复杂环境下目标检测的精度及速度。所提出的深度分离可变形卷积主要是在可变形卷积获取卷积核偏移量的过程中融合深度可分离卷积,以减少参数量来达到提升网络运行速度的目的,同时通过稀疏表示来提升网络的鲁棒性。实验结果显示,相比ResNet作为基础网络的SSD检测模型,利用深度分离可变形卷积改进的SSD检测模型检测水下目标的准确率提升了11个百分点,检测时间减少了3 ms,证明新算法的有效性。 展开更多
关键词 水下目标检测 SSD 深度可分离卷积 可变形卷积
下载PDF
高分辨率遥感影像深度迁移可变形卷积的场景分类法 被引量:11
2
作者 施慧慧 徐雁南 +1 位作者 滕文秀 王妮 《测绘学报》 EI CSCD 北大核心 2021年第5期652-663,共12页
近年来基于深度卷积神经网络的高分辨率遥感影像场景分类成为广泛关注的焦点。由于现有深度卷积神经网络对遥感场景影像的几何形变不具有稳健性,本文提出了一种基于深度迁移可变形卷积神经网络(DTDCNN)的场景分类方法。该方法先利用大... 近年来基于深度卷积神经网络的高分辨率遥感影像场景分类成为广泛关注的焦点。由于现有深度卷积神经网络对遥感场景影像的几何形变不具有稳健性,本文提出了一种基于深度迁移可变形卷积神经网络(DTDCNN)的场景分类方法。该方法先利用大型自然场景数据集ImageNet上训练的深度模型提取遥感影像的深度特征,然后引入可变形卷积层,进一步学习对遥感场景的几何形变具有稳健性的深度特征。结果表明:增加可变形卷积后,DTDCNN在AID、UC-Merced和NWPU-RESISC45数据集上的精度分别提高了4.25%、1.9%和4.83%。该方法通过对场景中不同目标进行感受野自适应调整,增强了空间采样位置能力,有效提高了遥感场景分类的精度。 展开更多
关键词 遥感 场景分类 卷积神经网络 可变形卷积 迁移学习
下载PDF
基于可变形卷积神经网络的图像分类研究 被引量:6
3
作者 欧阳针 陈玮 《软件导刊》 2017年第6期198-201,共4页
卷积神经网络(Convolutional Neural Networks,CNNs)具有强大的特征自学习与抽象表达能力,在图像分类领域有着广泛应用。但是,各模块较为固定的几何结构完全限制了卷积神经网络对空间变换的建模,难以避免地受到数据空间多样性的影响。... 卷积神经网络(Convolutional Neural Networks,CNNs)具有强大的特征自学习与抽象表达能力,在图像分类领域有着广泛应用。但是,各模块较为固定的几何结构完全限制了卷积神经网络对空间变换的建模,难以避免地受到数据空间多样性的影响。在卷积网络中引入自学习的空间变换结构,或是引入可变形的卷积,使卷积核形状可以发生变化,以适应不同的输入特征图,丰富了卷积网络的空间表达能力。对现有卷积神经网络进行了改进,结果表明其在公共图像库和自建图像库上都表现出了更好的分类效果。 展开更多
关键词 卷积神经网络 图像分类 空间变换 可变形卷积
下载PDF
融合特征金字塔与可变形卷积的高密度群养猪计数方法 被引量:5
4
作者 王荣 高荣华 +3 位作者 李奇峰 冯璐 白强 马为红 《农业机械学报》 EI CAS CSCD 北大核心 2022年第10期252-260,共9页
针对猪只人工计数方法消耗时间和劳动力,育肥猪较为活跃且喜好聚集,图像中存在大量的高密度区域,导致猪只之间互相粘连、遮挡等问题,基于SOLO v2实例分割算法,提出了一种自然养殖场景下融合多尺度特征金字塔与二代可变形卷积的高密度群... 针对猪只人工计数方法消耗时间和劳动力,育肥猪较为活跃且喜好聚集,图像中存在大量的高密度区域,导致猪只之间互相粘连、遮挡等问题,基于SOLO v2实例分割算法,提出了一种自然养殖场景下融合多尺度特征金字塔与二代可变形卷积的高密度群养猪计数模型。通过优化模型结构来减少计算资源的消耗与占用。将科大讯飞给出的猪只计数的公开数据集划分为猪只分割数据集和猪只盘点测试集,利用猪只分割数据集获得较好的分割模型,然后在猪只盘点测试集中测试盘点准确率,实现猪群分割和猪只计数。实验结果表明,本文提出的高密度猪只计数模型的分割准确率达到96.7%,且模型内存占用量为256 MB,为改进前的2/3,实现了遮挡、粘连和重叠情况下的猪只个体高准确率分割。在含有500幅猪只图像计数测试集中,模型计算猪只数量误差为0时的图像数量为207幅,较改进前提高26%。模型计算猪只数量误差小于2头猪的图像数量占测试图像总数量的97.2%。模型计算猪只数量误差大于3头猪的图像数量占总体图像数量比例仅为1%。最后,对比基于YOLO v5的群养猪计数方法,本文模型具有更优的分割效果和计数准确率,验证了本文方法对群养猪只计数的有效性。因此,本文模型既实现了高密度猪群的精准计数,还通过优化模型结构大大降低了模型对计算设备的依赖,使其适用于养殖场内猪群在线计数。 展开更多
关键词 高密度群养猪 计数模型 实例分割 SOLO v2 多尺度特征金字塔网络 可变形卷积
下载PDF
基于注意力机制和可变形卷积的路面裂缝检测 被引量:3
5
作者 隆涛 董安国 刘来君 《计算机科学》 CSCD 北大核心 2023年第S01期392-397,共6页
针对较复杂背景下路面裂缝检测问题,由于基于深度学习的图像分割算法检测效果不甚理想,以及裂缝图像自身像素类别不平衡,提出了一种基于注意力机制和可变形卷积的路面裂缝检测网络,该网络基于编码-解码结构进行构建。为了解决较为复杂... 针对较复杂背景下路面裂缝检测问题,由于基于深度学习的图像分割算法检测效果不甚理想,以及裂缝图像自身像素类别不平衡,提出了一种基于注意力机制和可变形卷积的路面裂缝检测网络,该网络基于编码-解码结构进行构建。为了解决较为复杂背景裂缝检测困难的问题,首先,由可变形卷积提升网络对不同形状裂缝线性特征的学习能力;其次,使用密集连接机制强化特征信息;然后,在解码阶段采用转置卷积和桥接方式与编码阶段特征逐步融合,并结合多级特征融合的思想,提高网络的检测精度;最后,引入注意力模块(SimAM),在不增加网络参数的前提下,更加关注目标特征的提取,抑制背景特征。在两个公开裂缝数据集上进行实验来验证该算法的有效性,实验结果表明,该算法的各项性能评价指标均优于对比算法,BCrack数据集的平均像素精度、平均交并比分别达到92.12%和84.79%,CFD数据集的平均像素精度、平均交并比分别达到91.02%和74.75%,在复杂背景裂缝检测下表现良好,可应用于路面维修工程。 展开更多
关键词 裂缝检测 编码-解码结构 可变形卷积 密集连接机制 注意力模块
下载PDF
基于形变卷积神经网络的行为识别
6
作者 李君君 张彬彬 江朝晖 《智能计算机与应用》 2021年第5期53-58,64,共7页
人类行为识别作为视频分类中的重要问题,成为计算机视觉中的热门话题。由于卷积神经网络(CNN)的几何结构固定统一,这将会使得其几何变形建模受限,使得行为识别网络难以鲁棒性的识别行为类别。本文提出了一种融入可形变卷积的行为识别网... 人类行为识别作为视频分类中的重要问题,成为计算机视觉中的热门话题。由于卷积神经网络(CNN)的几何结构固定统一,这将会使得其几何变形建模受限,使得行为识别网络难以鲁棒性的识别行为类别。本文提出了一种融入可形变卷积的行为识别网络模型。首先,引入可形变卷积,构建了一种可协同学习空间外观和时间运动线索的模块,该模块分别学习视频数据3个正交视图特征进行融合;其次,在ResNet网络的基础上,用该模块将其网络中部分关键性卷积模块进行替换,产生一种新颖的改进版本的3D-ResNet网络,用于视频数据集的训练和测试;最后,在UCF101和HMDB51数据集训练和测试,得到识别精度优于现有的大多数先进方法。 展开更多
关键词 行为识别 卷积神经网络 可形变卷积 ResNet
下载PDF
基于改进U-Net的视网膜血管分割方法研究
7
作者 郭峰 黄文博 燕杨 《长春师范大学学报》 2022年第12期62-67,73,共7页
针对视网膜血管结构复杂、图像对比度低与细节区域分割不精准问题,提出一种基于改进U-Net分割算法。针对卷积操作时卷积核的感受野范围较小而不能充分提取血管特征的问题,将原始卷积层替换成可变形卷积模块,该模块组合了不同尺度、不同... 针对视网膜血管结构复杂、图像对比度低与细节区域分割不精准问题,提出一种基于改进U-Net分割算法。针对卷积操作时卷积核的感受野范围较小而不能充分提取血管特征的问题,将原始卷积层替换成可变形卷积模块,该模块组合了不同尺度、不同复杂度的分支来丰富特征空间的多样性,增大卷积核的感受野范围,进而提升血管特征提取的效果;针对采样操作时产生的梯度消失问题,在网络上采样的过程引入循环残差卷积模块,有助于训练深层网络架构,解决梯度消失问题,避免冗余特征影响,更好地表示图像特征。将本文方法在DRIVE数据集上进行数据对比实验,实验结果的准确性为95.59%,特异性为97.92%,敏感性为79.63%,与当前主流的视网膜血管分割方法相比,改进的模型性能具有一定优势。 展开更多
关键词 血管分割 U-Net模型 可变形卷积 循环残差卷积
下载PDF
基于多尺度形变特征卷积网络的高分辨率遥感影像目标检测 被引量:38
8
作者 邓志鹏 孙浩 +2 位作者 雷琳 周石琳 邹焕新 《测绘学报》 EI CSCD 北大核心 2018年第9期1216-1227,共12页
传统的基于滑窗搜索和人工设计特征相结合的目标检测方法难以适用于海量高分辨率遥感图像的目标检测任务。本文提出了一种基于多尺度形变特征卷积网络的目标检测方法,利用可形变卷积网络对具有尺度和方向变化的遥感图像目标进行特征提取... 传统的基于滑窗搜索和人工设计特征相结合的目标检测方法难以适用于海量高分辨率遥感图像的目标检测任务。本文提出了一种基于多尺度形变特征卷积网络的目标检测方法,利用可形变卷积网络对具有尺度和方向变化的遥感图像目标进行特征提取,然后对多层残差模块提取出的形变特征进行区域预测和鉴别。具体模型包括两个子网络:(1)目标区域预测子网络用于从多层深度特征图提取目标候选区域;(2)目标区域鉴别子网络用于对目标候选区域进行分类和位置回归。本文在光学卫星图像10类目标数据集上对比了多种基于深度学习的目标检测算法,并将训练好的模型用于谷歌地球影像飞机坟场数据集和高分2号、吉林1号数据集的评估,试验结果表明本文方法能够快速准确地对多类目标进行检测,具有较好的稳健性和迁移性。 展开更多
关键词 遥感 目标检测 深度学习 形变卷积层 形变池化层
下载PDF
改进的Faster-RCNN目标检测方法在变电站悬挂异物检测中的应用 被引量:22
9
作者 刘黎 韩睿 +2 位作者 韩译锋 齐冬莲 闫云凤 《电测与仪表》 北大核心 2021年第1期142-146,共5页
针对变电站悬挂异物检测任务中异物形状多样、周围环境条件复杂,现有算法检测的准确率较低的问题,提出一种改进的Faster-RCNN目标检测方法,对变电站悬挂异物进行检测。将Faster-RCNN结合特征金字塔和可变性卷积,形成了改进的Faster-RCN... 针对变电站悬挂异物检测任务中异物形状多样、周围环境条件复杂,现有算法检测的准确率较低的问题,提出一种改进的Faster-RCNN目标检测方法,对变电站悬挂异物进行检测。将Faster-RCNN结合特征金字塔和可变性卷积,形成了改进的Faster-RCNN目标检测方法,扩展了Faster-RCNN网络结构对输入图片中不同尺度语义信息的读取,提升了网络对小目标的检测能力。采用了变电专业设备典型缺陷图像识别竞赛中的悬挂异物图像数据进行仿真实验,并与原有Faster-RCNN算法进行对比,实验结果验证了所提出方法的有效性,算法识别准确率得到提高,在真实样本中表现好,可有效应用于变电站巡检机器人系统中。 展开更多
关键词 变电站悬挂异物检测 Faster-RCNN 特征金字塔 可变性卷积
下载PDF
面向复杂环境中带钢表面缺陷检测的轻量级DCN-YOLO 被引量:19
10
作者 卢俊哲 张铖怡 +1 位作者 刘世鹏 宁德军 《计算机工程与应用》 CSCD 北大核心 2023年第15期318-328,共11页
基于深度学习的智能检测技术逐渐在复杂钢铁生产环境带钢表面缺陷检测过程中使用。为了应对在资源受限的边缘设备中部署高精度模型的挑战,提出一个面向复杂环境中带钢表面缺陷检测的轻量级DCN-YOLO模型,该模型将可形变卷积网络DCN与原始... 基于深度学习的智能检测技术逐渐在复杂钢铁生产环境带钢表面缺陷检测过程中使用。为了应对在资源受限的边缘设备中部署高精度模型的挑战,提出一个面向复杂环境中带钢表面缺陷检测的轻量级DCN-YOLO模型,该模型将可形变卷积网络DCN与原始YOLOv5结合,以提高模型对不同尺寸和形状缺陷的灵敏度。为降低计算复杂度,在YOLO模型中引入了深度可分离卷积DSConv和高效通道注意力机制ECA两个轻量级模块,使模型更好地理解输入数据中各个通道之间的关系,在提高模型的检测精度和泛化能力的同时,大幅降低模型的计算量。进一步通过消融实验及横向对比实验,验证了每个创新模块的有效性。通过经典的开源带钢数据集NEU-DET和实际工业带钢数据集分别验证了轻量级DCN-YOLO模型在表面缺陷检测精度和计算复杂度方面的优势。 展开更多
关键词 带钢表面缺陷检测 可形变卷积网络 深度可分离卷积 ECA通道注意力 轻量级YOLOv5 图像预处理
下载PDF
运动场景下改进YOLOv5小目标检测算法 被引量:12
11
作者 朱瑞鑫 杨福兴 《计算机工程与应用》 CSCD 北大核心 2023年第10期196-203,共8页
针对运动场景下由于设备移动、相机散焦,导致采集到的图像模糊,图像质量低,以及目标体积小,使目标检测困难的问题,提出了一种改进YOLOv5x目标实时检测模型。采用可变形卷积网络替换部分原始YOLOv5x中传统的卷积层,增强模型在运动场景中... 针对运动场景下由于设备移动、相机散焦,导致采集到的图像模糊,图像质量低,以及目标体积小,使目标检测困难的问题,提出了一种改进YOLOv5x目标实时检测模型。采用可变形卷积网络替换部分原始YOLOv5x中传统的卷积层,增强模型在运动场景中细粒度特征提取和小目标检测能力;增加SE注意力机制,解决在卷积过程中,因丢失图像全局上下文信息,造成特征损失的问题,提高了模型在图像模糊情况下小目标的检测精度;引入一种新的边界框回归损失函数SIoU Loss,解决了预测框在回归时随意匹配的问题,提高了模型鲁棒性和泛化能力,加快网络的收敛速度。实验结果表明,相比于YOLOv5x模型,将改进后的算法应用在水下移动机器人生物检测中,模型准确率P、召回率R、各类平均精度mAP分别提升了5.90个百分点、5.85个百分点、4.38个百分点,有效增强了小目标检测模型的检测性能。 展开更多
关键词 可变形卷积网络 注意力机制 SIoU Loss YOLOv5x
下载PDF
复杂背景下SAR图像近岸舰船目标检测 被引量:12
12
作者 李永刚 朱卫纲 +2 位作者 黄琼男 李云涛 何永华 《系统工程与电子技术》 EI CSCD 北大核心 2022年第10期3096-3103,共8页
针对合成孔径雷达(synthetic aperture radar,SAR)图像近岸舰船目标易受背景杂波的影响,造成SAR图像近岸舰船目标检测检测率低、虚警率和漏检率高的问题,提出一种适用于复杂背景下SAR图像近岸舰船目标检测的DFF-Yolov5(deformable featu... 针对合成孔径雷达(synthetic aperture radar,SAR)图像近岸舰船目标易受背景杂波的影响,造成SAR图像近岸舰船目标检测检测率低、虚警率和漏检率高的问题,提出一种适用于复杂背景下SAR图像近岸舰船目标检测的DFF-Yolov5(deformable feature fusion you only look once 5)算法。构建了一个专门用于SAR图像复杂背景近岸舰船目标检测的数据集,基于Yolov5目标检测算法,在特征提取网络中进行特征细化和多特征融合两个方面的改进。在特征提取网络中利用可变形卷积神经网络改变卷积对目标采样点的位置,增强目标的特征提取能力,提高复杂背景下SAR图像舰船目标的检测率。在多特征融合网络结构中采用级联和并列金字塔,进行不同层级的特征融合。同时,使用空洞卷积扩大特征提取的视觉感受野,增强网络对复杂背景近岸多尺度舰船目标的适应性,降低复杂背景下SAR图像舰船目标检测的虚警率。通过在构建的复杂背景近岸舰船检测数据集上的测试实验,结果表明:DFF-Yolov5的平均准确率为85.99%,相比于原始的Yolov5,所提方法平均准确率提高了5.09%,精度提高了1.4%。 展开更多
关键词 合成孔径雷达 目标检测 近岸舰船目标 多特征融合 可变形卷积神经网络
下载PDF
基于环视相机的无人驾驶汽车实例分割方法 被引量:10
13
作者 邓琉元 杨明 +1 位作者 王春香 王冰 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2018年第12期24-29,共6页
针对环视鱼眼图像中目标几何畸变大导致建模难的问题,提出一种基于可变形卷积网络的实例分割方法,主要是在Mask R-CNN框架的基础上引入可变形卷积和可变形RoI Pooling(候选区域池化)来提升网络对几何畸变的建模能力.针对深度神经网络训... 针对环视鱼眼图像中目标几何畸变大导致建模难的问题,提出一种基于可变形卷积网络的实例分割方法,主要是在Mask R-CNN框架的基础上引入可变形卷积和可变形RoI Pooling(候选区域池化)来提升网络对几何畸变的建模能力.针对深度神经网络训练数据缺乏、易过拟合的问题,提出了基于多任务学习的训练方法.首先将现有的大规模普通图像数据集转换为鱼眼数据集来弥补训练数据不足的问题,然后采用多任务学习的训练方法将转换的图像和真实图像放在同一个框架中训练以提高网络的泛化能力.用该方法在真实的环视鱼眼图像上做测试,结果表明:相对于原始Mask R-CNN的方法平均精度提升了3.1%,证明了该方法在真实交通环境中的有效性. 展开更多
关键词 图像处理 无人驾驶 环境感知 实例分割 可变形卷积网络 多任务学习 环视相机
原文传递
基于可变形卷积神经网络的数字仪表识别方法 被引量:10
14
作者 郭兰英 韩睿之 程鑫 《计算机科学》 CSCD 北大核心 2020年第10期187-193,共7页
目前,对于数显仪表的识别,多采用传统的图像处理及机器学习等方法,在复杂多变的应用场景中,其对字符、数字的识别准确率低,难以满足实时应用的要求。针对以上问题,将传统图像处理技术与深度学习方法相结合,提出了一种基于可变形卷积神... 目前,对于数显仪表的识别,多采用传统的图像处理及机器学习等方法,在复杂多变的应用场景中,其对字符、数字的识别准确率低,难以满足实时应用的要求。针对以上问题,将传统图像处理技术与深度学习方法相结合,提出了一种基于可变形卷积神经网络的数显仪表示数分割与识别方法。该方法包含图像预处理、字符分割与识别等步骤。首先,使用GrayWorld算法对待识别图像进行亮度均衡,并通过彩色分割提取屏幕区域;其次,对图像进行形态学操作,以便使用投影直方图法完成字符与对应小数点的整体分割;最后,设计并训练了一种可变形卷积神经网络对字符进行识别,优化了卷积神经网络感受野几何结构固定的内在问题。实验结果表明,加入可变形卷积有效提高了图像的识别准确率和网络的收敛速度;该方法的整体识别准确率达到99.45%,检测速度为10FPS,能够满足实际应用需求。 展开更多
关键词 图像处理 字符识别 可变形卷积神经网络 投影直方图
下载PDF
基于卷积神经网络的火灾识别算法 被引量:10
15
作者 李杰 邱选兵 +3 位作者 张恩华 李宁 魏永卜 李传亮 《计算机应用》 CSCD 北大核心 2020年第S02期173-177,共5页
针对传统图像处理和浅层机器学习的火灾识别中准确率不太高、特征难以提取等问题,提出一种基于卷积神经网络的火灾识别算法。首先将图片数据集转化为快速HSI色彩格式,增加图片视觉特性,便于深度学习提取火焰特征;然后采用Inception_Resn... 针对传统图像处理和浅层机器学习的火灾识别中准确率不太高、特征难以提取等问题,提出一种基于卷积神经网络的火灾识别算法。首先将图片数据集转化为快速HSI色彩格式,增加图片视觉特性,便于深度学习提取火焰特征;然后采用Inception_Resnet_V2卷积神经网络结合可变形卷积网络(DCN)对数据集进行训练提取特征,提高卷积神经网络对目标几何变化的适应和建模能力;最后使用支持向量机(SVM)分批次训练提取到的特征来进行分类。实验结果表明,与传统图像处理和其他深度学习识别算法相比,所提算法准确率高、泛化能力强、漏报率低,对测试集识别准确率达99.04%,取得很好的火灾识别效果。 展开更多
关键词 可变形卷积网络 HSI色彩模型 支持向量机 卷积神经网络 深度学习
下载PDF
基于改进YOLOv8的SAR图像飞机目标检测算法 被引量:4
16
作者 陈益方 张上 +1 位作者 冉秀康 王杰 《电讯技术》 北大核心 2024年第8期1206-1212,共7页
针对合成孔径雷达(Synthetic Aperture Radar, SAR)图像飞机目标检测算法存在模型复杂度较高、检测效果差、泛化能力弱等问题,提出了一种基于改进YOLOv8的SAR图像飞机目标检测算法。首先,针对SAR图像飞机目标较小的特点,剔除大目标检测... 针对合成孔径雷达(Synthetic Aperture Radar, SAR)图像飞机目标检测算法存在模型复杂度较高、检测效果差、泛化能力弱等问题,提出了一种基于改进YOLOv8的SAR图像飞机目标检测算法。首先,针对SAR图像飞机目标较小的特点,剔除大目标检测层,重构特征提取网络和特征融合网络,降低模型计算量。其次,在主干网络引入可变形卷积(Deformable Convolutional Network, DCN),增强特征提取能力;在颈部网络引入全局注意力机制(Global Attention Mechanism, GAM)提高检测精度。最后,采用WIOU(Wise-IoU)损失函数提高收敛速度和回归精度。在SADD数据集(SAR Aircraft Detection Dataset)上实验结果显示,改进算法较原YOLOv8算法模型体积压缩59.66%,参数量降低61.18%,计算量减少18.29%,最高精度提高至98.1%。与其他算法相比,所提算法在保证较高检测精度的情况下大幅降低了模型体积、参数量和计算量,实现了模型复杂度和检测精度的平衡。 展开更多
关键词 合成孔径雷达 飞机目标检测 网络重构 可变形卷积 GAM注意力机制
下载PDF
注意力可变形卷积网络的木质板材瑕疵识别 被引量:3
17
作者 朱咏梅 李玉玲 +1 位作者 奚峥皓 盛鸿宇 《西南大学学报(自然科学版)》 CSCD 北大核心 2024年第2期159-169,共11页
为了解决木材缺陷检测中人工成本高、效率低的问题,该文基于可变性卷积网络和注意力机制,提出一种端到端的神经架构模型.首先,可变形卷积网络(Deformable Convolutional Network, DCN)通过将矩形网格转换为变形网格,使模型专注于具有更... 为了解决木材缺陷检测中人工成本高、效率低的问题,该文基于可变性卷积网络和注意力机制,提出一种端到端的神经架构模型.首先,可变形卷积网络(Deformable Convolutional Network, DCN)通过将矩形网格转换为变形网格,使模型专注于具有更多有用图像信息的区域.使用可变形卷积网络可以忽略图像特征中不相关的系数,解决了传统卷积在特征中学习更多信息能力有限的问题.然后,将DCN输出馈送到门控循环单元(Gated Recurrent Unit, GRU)层以学习缺陷图像的高级特征.最后,通过关注输入图像的最重要特征,应用注意力机制加强瑕疵区域的高亮度,从而提高模型识别的准确性.使用Matlab平台在4个木质板材缺陷数据集上将该文方法与现有其他方法进行比较分析,该文方法的准确率比其他3种对比方法提高了2.4%~13.2%的维度,灵敏度提高了3.3%~16.6%的维度,特异性提高了4%~21%的维度.实验结果表明,该文方法在检测精度和其他各个性能方面均优于现有方法,最佳准确率为99.2%,证明了该文方法的有效性. 展开更多
关键词 可变形卷积网络 注意力机制 瑕疵识别 缺陷 深度学习 木质板材
下载PDF
C-3D可变形卷积神经网络模型的肺结节检测 被引量:7
18
作者 阮宏洋 陈志澜 +1 位作者 程英升 杨凯 《激光与光电子学进展》 CSCD 北大核心 2020年第4期144-154,共11页
在C-3D卷积神经网络模型基础上,提出了一种三维可变形卷积神经网络以实现肺结节的检测。在模型的主体结构上,采用了三维可变形卷积和三维可变形池化的操作,解决了传统的方块卷积与池化在应对不规则的肺结节时,无法高效率地收集到肺结节... 在C-3D卷积神经网络模型基础上,提出了一种三维可变形卷积神经网络以实现肺结节的检测。在模型的主体结构上,采用了三维可变形卷积和三维可变形池化的操作,解决了传统的方块卷积与池化在应对不规则的肺结节时,无法高效率地收集到肺结节像素点的问题。在模型的输入上,通过调整三维卷积神经网络的输入,实现了卷积神经网络对样本图片的32×32×32像素逐步扫描和识别,在扫描识别的同时进行定位,解决了肺结节定位问题。在模型的输出上,借鉴了全卷积神经网络的思想,将C-3D网络的第一层全连接层改为卷积层,解决训练时内存会溢出的问题。在模型参数上,提出了三种不同学习率和三种优化函数进行精确的实验对比,绘制了不同学习率和优化函数的参数对比图,根据实验结果找到最优的卷积神经网络模型学习率和优化函数参数。对实验结果的分析表明,该方法在受试者工作曲线下面积、分类准确率、召回率、F1值均取得了显著的提高。 展开更多
关键词 图像处理 可变形卷积神经网络 肺结节 池化层
原文传递
基于YOLOv3的车辆检测算法 被引量:5
19
作者 赵益 张志梅 《青岛大学学报(自然科学版)》 CAS 2020年第3期57-64,共8页
针对城市道路场景下车辆检测精度低的问题,提出了一种基于YOLOv3的车辆检测方法。借鉴了可变形卷积网络(Deformable Convolutional Networks,DCN)的思想,对YOLOv3的Darknet-53主干网络结构进行优化,在残差模块中加入了可变形卷积增加网... 针对城市道路场景下车辆检测精度低的问题,提出了一种基于YOLOv3的车辆检测方法。借鉴了可变形卷积网络(Deformable Convolutional Networks,DCN)的思想,对YOLOv3的Darknet-53主干网络结构进行优化,在残差模块中加入了可变形卷积增加网络的特征提取能力,提高了模型的检测精度。实验分析表明,改进的YOLOv3模型在KITTI数据集的车辆类别上mAP达到了92.33%,对比YOLOv3模型精度提高了1.74%。 展开更多
关键词 车辆检测 YOLOv3 Darknet-53 可变形卷积网络
下载PDF
基于改进YOLO v5算法的道路小目标检测 被引量:1
20
作者 宋存利 柴伟琴 张雪松 《系统工程与电子技术》 EI CSCD 北大核心 2024年第10期3271-3278,共8页
为解决交通道路小目标检测难度大、精度低,容易出现错检漏检的问题,提出一种基于YOLO v5(you only look once v5)算法的多尺度特征融合目标检测改进算法。首先,增加小目标检测头用于适应小目标尺寸,缓解漏检情况。然后,引入可变形卷积网... 为解决交通道路小目标检测难度大、精度低,容易出现错检漏检的问题,提出一种基于YOLO v5(you only look once v5)算法的多尺度特征融合目标检测改进算法。首先,增加小目标检测头用于适应小目标尺寸,缓解漏检情况。然后,引入可变形卷积网络v2(deformable convolutional networks V2,DCN V2)提高模型对运动中小目标的学习能力;同时,增加上下文增强模块,提升对远距离小目标的识别能力。最后,在替换损失函数、提高边界框定位精度的同时,使用空间金字塔池化和上下文空间金字塔卷积分组模块,提高网络的感受野和特征表达能力。实验结果表明,所提算法在KITTI数据集小目标类别上平均识别精度达到了95.2%,相较于原始YOLO v5,算法总体平均识别精度提升了2.7%,对小目标的检测效果更佳,平均识别精度提升了3.1%,证明所提算法在道路小目标检测方面的有效性。 展开更多
关键词 YOLO v5 小目标检测 上下文增强模块 可变形卷积
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部