A lane-level intersection map is a cornerstone in high-definition(HD) traffic network maps for autonomous driving and high-precision intelligent transportation systems applications such as traffic management and contr...A lane-level intersection map is a cornerstone in high-definition(HD) traffic network maps for autonomous driving and high-precision intelligent transportation systems applications such as traffic management and control, and traffic accident evaluation and prevention. Mapping an HD intersection is time-consuming, labor-intensive, and expensive with conventional methods. In this paper, we used a low-channel roadside light detection and range sensor(LiDAR) to automatically and dynamically generate a lane-level intersection, including the signal phases, geometry, layout, and lane directions. First, a mathematical model was proposed to describe the topology and detail of a lane-level intersection. Second, continuous and discontinuous traffic object trajectories were extracted to identify the signal phases and times. Third, the layout, geometry, and lane direction were identified using the convex hull detection algorithm for trajectories. Fourth, a sliding window algorithm was presented to detect the lane marking and extract the lane, and the virtual lane connecting the inbound and outbound of the intersection were generated using the vehicle trajectories within the intersection and considering the traffic rules. In the field experiment, the mean absolute estimation error is 2 s for signal phase and time identification. The lane marking identification Precision and Recall are96% and 94.12%, respectively. Compared with the satellite-based,MMS-based, and crowdsourcing-based lane mapping methods,the average lane location deviation is 0.2 m and the update period is less than one hour by the proposed method with low-channel roadside LiDAR.展开更多
基金supported in part by the Scientific Research Project of the Education Department of Jilin Province (JJKH20221020KJ)the National Natural Science Foundation of China (51408257)the Graduate Innovation Fund of Jilin University (101832020CX150)。
文摘A lane-level intersection map is a cornerstone in high-definition(HD) traffic network maps for autonomous driving and high-precision intelligent transportation systems applications such as traffic management and control, and traffic accident evaluation and prevention. Mapping an HD intersection is time-consuming, labor-intensive, and expensive with conventional methods. In this paper, we used a low-channel roadside light detection and range sensor(LiDAR) to automatically and dynamically generate a lane-level intersection, including the signal phases, geometry, layout, and lane directions. First, a mathematical model was proposed to describe the topology and detail of a lane-level intersection. Second, continuous and discontinuous traffic object trajectories were extracted to identify the signal phases and times. Third, the layout, geometry, and lane direction were identified using the convex hull detection algorithm for trajectories. Fourth, a sliding window algorithm was presented to detect the lane marking and extract the lane, and the virtual lane connecting the inbound and outbound of the intersection were generated using the vehicle trajectories within the intersection and considering the traffic rules. In the field experiment, the mean absolute estimation error is 2 s for signal phase and time identification. The lane marking identification Precision and Recall are96% and 94.12%, respectively. Compared with the satellite-based,MMS-based, and crowdsourcing-based lane mapping methods,the average lane location deviation is 0.2 m and the update period is less than one hour by the proposed method with low-channel roadside LiDAR.