Copper Zinc Tin Sulfide (CZTS) solar cell (SC) has garnered significant attention from researchers in recent years owing to its affordability, less toxic earth abundant constituents, remarkable conversion efficiency a...Copper Zinc Tin Sulfide (CZTS) solar cell (SC) has garnered significant attention from researchers in recent years owing to its affordability, less toxic earth abundant constituents, remarkable conversion efficiency and promising prospects for the bulk manufacture of thin film solar cells. Moreover, CZTS exhibits a high absorption coefficient and possesses an optimal adjustable direct band gap, making it a promising candidate for various photovoltaic applications. Hence, in this study, a new configuration (CuSbS<sub>2</sub>/CZTS/CdS/i-ZnO/ Al: ZnO) is introduced for CZTS SC, which was simulated using SCAPS-1D. The utilization of CuSbS<sub>2</sub> as the back surface field (BSF) and CdS as the buffer layer was investigated to enhance the performance of CZTS SC. Moreover, a comparative numerical analysis was carried out to contrast the SC configurations of CZTS/CdS/i-ZnO/Al: ZnO and CuSbS<sub>2</sub>/CZTS/CdS/i-ZnO/Al: ZnO. In this study, the impact on SC parameters such as open circuit voltage (V<sub>oc</sub>), short- circuit current density (J<sub>sc</sub>), Fill-factor (FF), and Power Conversion Efficiency (PCE) by varying thickness, doping density, defect density of absorber and buffer layer, thickness and doping density of BSF, and operating temperature have been thoroughly investigated. The optimum structure consists of i-ZnO and Al: ZnO for the window layer, CdS for the buffer layer, CZTS for the absorber layer, and BSF layers with thicknesses of 50 nm, 200 nm, 50 nm, 2000 nm, and 50 nm, respectively. The designed SC with a BSF layer had a PCE of 28.76%, J<sub>SC</sub> of 32.53 mA/cm<sup>2</sup>, V<sub>oc</sub> of 1.01233 V, and FF of 87.35%. The structure without a BSF layer has a PCE of 24.21%, V<sub>oc</sub> of 0.898 V, J<sub>SC</sub> of 31.56 mA/cm<sup>2</sup>, and FF of 85.32%. Furthermore, an analysis of temperature, quantum efficiency (QE), C- V characteristics and the J-V curve was conducted, revealing the potential of CuSbS<sub>2</sub> as a BSF and CdS as a buffer layer in high-performance, cost-eff展开更多
The paper reported the design and thorough analysis of a thin-film solar cell (TFSC) based on molybdenum disulfide (MoS<sub>2</sub>) with an integrated Copper(I) Oxide (Cu<sub>2</sub>O) hole tr...The paper reported the design and thorough analysis of a thin-film solar cell (TFSC) based on molybdenum disulfide (MoS<sub>2</sub>) with an integrated Copper(I) Oxide (Cu<sub>2</sub>O) hole transport layer (HTL), employing the one-dimensional Solar Cell Capacitance Simulator (SCAPS-1D) software. By varying crucial parameters such as absorber layer thickness, doping density, and bulk defect density, as well as HTL thickness, doping concentration, and electron affinity, defect density at ZnO/absorber and absorber/Cu<sub>2</sub>O interfaces, and operating temperature, we explored key photovoltaic measures including open circuit voltage (Voc), short-circuit current density (Jsc), fill-factor (FF), and power conversion efficiency (PCE) of the hetero-junction solar cell. The study demonstrated an efficiency of 18.87% for the MoS<sub>2</sub> solar cell without HTL, while the proposed solar cell (SC) utilizing Cu<sub>2</sub>O HTL and optimized device structure exhibited a remarkable PCE of 26.70%. The outcomes derived from the present study offer valuable insights for the progress of a highly efficient and economically viable MoS<sub>2</sub> hetero-junction TFSC.展开更多
In this manuscript, we used the SCAPS-1D software to perform numerical simulations on a perovskite solar cell. These simulations were used to study the influence of certain parameters on the electrical behavior of the...In this manuscript, we used the SCAPS-1D software to perform numerical simulations on a perovskite solar cell. These simulations were used to study the influence of certain parameters on the electrical behavior of the cell. We have shown in this study that electron mobility is strongly influenced by the thickness of the absorber, since electron velocity is reduced by thickness. The influence of the defect density shows that above 10<sup>16</sup> cm<sup>-3</sup> all the electrical parameters are affected by the defects. The band discontinuity at the interface generally plays a crucial role in the charge transport phenomenon. The importance of this study is to enable the development of good quality perovskite solar cells, while taking into account the parameters that limit solar cell performance.展开更多
利用wx AMPS软件构建了高效Ga In P/Ga As/Ge太阳电池的中电池模型,并对电池抗辐照性能进行模拟研究。模拟发现,当辐照缺陷密度较小时,缺陷对中电池的电性能影响较小;当缺陷密度较大时,电性能的下降与电子注量值的对数成正比。计算电池...利用wx AMPS软件构建了高效Ga In P/Ga As/Ge太阳电池的中电池模型,并对电池抗辐照性能进行模拟研究。模拟发现,当辐照缺陷密度较小时,缺陷对中电池的电性能影响较小;当缺陷密度较大时,电性能的下降与电子注量值的对数成正比。计算电池的I-V和量子效率谱(QE曲线)可知,电池电性能的下降直接对应于量子效率的下降、饱和暗电流的增强以及并联电阻的衰降。模拟结果与试验结果的对比显示,在各子电池均匀损伤的假定下,1 Me V电子辐照的缺陷引入率约为0.81。展开更多
文摘Copper Zinc Tin Sulfide (CZTS) solar cell (SC) has garnered significant attention from researchers in recent years owing to its affordability, less toxic earth abundant constituents, remarkable conversion efficiency and promising prospects for the bulk manufacture of thin film solar cells. Moreover, CZTS exhibits a high absorption coefficient and possesses an optimal adjustable direct band gap, making it a promising candidate for various photovoltaic applications. Hence, in this study, a new configuration (CuSbS<sub>2</sub>/CZTS/CdS/i-ZnO/ Al: ZnO) is introduced for CZTS SC, which was simulated using SCAPS-1D. The utilization of CuSbS<sub>2</sub> as the back surface field (BSF) and CdS as the buffer layer was investigated to enhance the performance of CZTS SC. Moreover, a comparative numerical analysis was carried out to contrast the SC configurations of CZTS/CdS/i-ZnO/Al: ZnO and CuSbS<sub>2</sub>/CZTS/CdS/i-ZnO/Al: ZnO. In this study, the impact on SC parameters such as open circuit voltage (V<sub>oc</sub>), short- circuit current density (J<sub>sc</sub>), Fill-factor (FF), and Power Conversion Efficiency (PCE) by varying thickness, doping density, defect density of absorber and buffer layer, thickness and doping density of BSF, and operating temperature have been thoroughly investigated. The optimum structure consists of i-ZnO and Al: ZnO for the window layer, CdS for the buffer layer, CZTS for the absorber layer, and BSF layers with thicknesses of 50 nm, 200 nm, 50 nm, 2000 nm, and 50 nm, respectively. The designed SC with a BSF layer had a PCE of 28.76%, J<sub>SC</sub> of 32.53 mA/cm<sup>2</sup>, V<sub>oc</sub> of 1.01233 V, and FF of 87.35%. The structure without a BSF layer has a PCE of 24.21%, V<sub>oc</sub> of 0.898 V, J<sub>SC</sub> of 31.56 mA/cm<sup>2</sup>, and FF of 85.32%. Furthermore, an analysis of temperature, quantum efficiency (QE), C- V characteristics and the J-V curve was conducted, revealing the potential of CuSbS<sub>2</sub> as a BSF and CdS as a buffer layer in high-performance, cost-eff
文摘The paper reported the design and thorough analysis of a thin-film solar cell (TFSC) based on molybdenum disulfide (MoS<sub>2</sub>) with an integrated Copper(I) Oxide (Cu<sub>2</sub>O) hole transport layer (HTL), employing the one-dimensional Solar Cell Capacitance Simulator (SCAPS-1D) software. By varying crucial parameters such as absorber layer thickness, doping density, and bulk defect density, as well as HTL thickness, doping concentration, and electron affinity, defect density at ZnO/absorber and absorber/Cu<sub>2</sub>O interfaces, and operating temperature, we explored key photovoltaic measures including open circuit voltage (Voc), short-circuit current density (Jsc), fill-factor (FF), and power conversion efficiency (PCE) of the hetero-junction solar cell. The study demonstrated an efficiency of 18.87% for the MoS<sub>2</sub> solar cell without HTL, while the proposed solar cell (SC) utilizing Cu<sub>2</sub>O HTL and optimized device structure exhibited a remarkable PCE of 26.70%. The outcomes derived from the present study offer valuable insights for the progress of a highly efficient and economically viable MoS<sub>2</sub> hetero-junction TFSC.
文摘In this manuscript, we used the SCAPS-1D software to perform numerical simulations on a perovskite solar cell. These simulations were used to study the influence of certain parameters on the electrical behavior of the cell. We have shown in this study that electron mobility is strongly influenced by the thickness of the absorber, since electron velocity is reduced by thickness. The influence of the defect density shows that above 10<sup>16</sup> cm<sup>-3</sup> all the electrical parameters are affected by the defects. The band discontinuity at the interface generally plays a crucial role in the charge transport phenomenon. The importance of this study is to enable the development of good quality perovskite solar cells, while taking into account the parameters that limit solar cell performance.
文摘利用wx AMPS软件构建了高效Ga In P/Ga As/Ge太阳电池的中电池模型,并对电池抗辐照性能进行模拟研究。模拟发现,当辐照缺陷密度较小时,缺陷对中电池的电性能影响较小;当缺陷密度较大时,电性能的下降与电子注量值的对数成正比。计算电池的I-V和量子效率谱(QE曲线)可知,电池电性能的下降直接对应于量子效率的下降、饱和暗电流的增强以及并联电阻的衰降。模拟结果与试验结果的对比显示,在各子电池均匀损伤的假定下,1 Me V电子辐照的缺陷引入率约为0.81。