期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
利用基于深度学习的过完备字典信号稀疏表示算法压制地震随机噪声 被引量:7
1
作者 唐杰 孟涛 +1 位作者 张文征 陈学国 《石油地球物理勘探》 EI CSCD 北大核心 2020年第6期1202-1209,1160,共9页
曲波变换去噪处理使同相轴在断层等不连续区域发生畸变,对有效信号产生干扰。基于过完备字典信号稀疏表示(K-SVD)需要人工反复调整参数才能改善去噪效果。为此,将K-SVD去噪算法与深度学习网络相结合,综合考虑深度学习网络与稀疏表示方... 曲波变换去噪处理使同相轴在断层等不连续区域发生畸变,对有效信号产生干扰。基于过完备字典信号稀疏表示(K-SVD)需要人工反复调整参数才能改善去噪效果。为此,将K-SVD去噪算法与深度学习网络相结合,综合考虑深度学习网络与稀疏表示方法的优点,研究了基于深度学习的过完备字典信号稀疏表示(Deep-KSVD)的地震数据随机噪声压制方法。为了使该网络有能力学习参数,在追踪阶段用一个等价的可学习的替代方案代替正交匹配追踪(OMP)算法。计算过程包括将数据分解为重叠的数据块、通过适当的追踪对每个数据块去噪以及通过去噪后的数据块加权重建整个数据,去噪处理包括稀疏编码、正则化系数估计以及数据块重建三个部分。模型数据和实际数据测试结果表明:当Deep-KSVD网络训练完成后,给定含噪数据,能够自适应地衰减地震噪声,并保护有效不连续性信息及数据结构特点,无需再进行参数调整;与K-SVD去噪方法相比,Deep-KSVD去噪方法的噪声压制效果更好,可提高全频带数据的信噪比。 展开更多
关键词 deep-ksvd 随机噪声 压制 深度学习 稀疏表示
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部