One of the most serious mining disasters in underground mines is rockburst phenomena.They can lead to injuries and even fatalities as well as damage to underground openings and mining equipment.This has forced many re...One of the most serious mining disasters in underground mines is rockburst phenomena.They can lead to injuries and even fatalities as well as damage to underground openings and mining equipment.This has forced many researchers to investigate alternative methods to predict the potential for rockburst occurrence.However,due to the highly complex relation between geological,mechanical and geometric parameters of the mining environment,the traditional mechanics-based prediction methods do not always yield precise results.With the emergence of machine learning methods,a breakthrough in the prediction of rockburst occurrence has become possible in recent years.This paper presents a state-ofthe-art review of various applications of machine learning methods for the prediction of rockburst potential.First,existing rockburst prediction methods are introduced,and the limitations of such methods are highlighted.A brief overview of typical machine learning methods and their main features as predictive tools is then presented.The current applications of machine learning models in rockburst prediction are surveyed,with related mechanisms,technical details and performance analysis.展开更多
越来越多的物联网数据呈现高维度特征,针对目前传感器数据异常检测算法对高维数据在线检测的困难,提出一种基于深度信念网络的高维传感器数据异常检测算法。首先利用深度信念网络对高维数据进行特征提取,降低原始数据维度,再对降维后的...越来越多的物联网数据呈现高维度特征,针对目前传感器数据异常检测算法对高维数据在线检测的困难,提出一种基于深度信念网络的高维传感器数据异常检测算法。首先利用深度信念网络对高维数据进行特征提取,降低原始数据维度,再对降维后的数据进行异常检测。在检测过程中将QSSVM(Quarter-Sphere Support Vector Machine)与滑动窗口模型相结合,实现了在线式的异常检测。通过在四组真实传感器数据上的大量实验,与先前的异常检测算法做了对比,实验结果表明,新算法相对于OCSVM(One-Class Support Vector Machine)仅利用原有算法50%的计算时间,将检测准确度提高了约20%。展开更多
复杂场景分类对于挖掘遥感图像中的价值信息具有重要意义。针对于遥感图像的复杂场景分类,提出了一种基于卷积神经网络(convolutional neural network,CNN)模型的分类方法,在该方法中构建了8层CNN网络结构,并对输入图像进行预处理操作...复杂场景分类对于挖掘遥感图像中的价值信息具有重要意义。针对于遥感图像的复杂场景分类,提出了一种基于卷积神经网络(convolutional neural network,CNN)模型的分类方法,在该方法中构建了8层CNN网络结构,并对输入图像进行预处理操作以进一步增强模型的适应性,且在模型分类器的选择问题上提供了Softmax和支持向量机2种分类器,使其能够自动化提取特征,避免了前期繁琐的图像处理和人工提取特征等过程。在UC Merced Land Use和Google of SIRI-WHU这2组数据集中进行实验,结果表明,相比于CNN with Overfeat feature和SRSCNN方法,该模型提高了2%以上的分类精度,且2种分类器的总体分类精度均能达到95%以上。展开更多
文摘One of the most serious mining disasters in underground mines is rockburst phenomena.They can lead to injuries and even fatalities as well as damage to underground openings and mining equipment.This has forced many researchers to investigate alternative methods to predict the potential for rockburst occurrence.However,due to the highly complex relation between geological,mechanical and geometric parameters of the mining environment,the traditional mechanics-based prediction methods do not always yield precise results.With the emergence of machine learning methods,a breakthrough in the prediction of rockburst occurrence has become possible in recent years.This paper presents a state-ofthe-art review of various applications of machine learning methods for the prediction of rockburst potential.First,existing rockburst prediction methods are introduced,and the limitations of such methods are highlighted.A brief overview of typical machine learning methods and their main features as predictive tools is then presented.The current applications of machine learning models in rockburst prediction are surveyed,with related mechanisms,technical details and performance analysis.
文摘越来越多的物联网数据呈现高维度特征,针对目前传感器数据异常检测算法对高维数据在线检测的困难,提出一种基于深度信念网络的高维传感器数据异常检测算法。首先利用深度信念网络对高维数据进行特征提取,降低原始数据维度,再对降维后的数据进行异常检测。在检测过程中将QSSVM(Quarter-Sphere Support Vector Machine)与滑动窗口模型相结合,实现了在线式的异常检测。通过在四组真实传感器数据上的大量实验,与先前的异常检测算法做了对比,实验结果表明,新算法相对于OCSVM(One-Class Support Vector Machine)仅利用原有算法50%的计算时间,将检测准确度提高了约20%。
文摘复杂场景分类对于挖掘遥感图像中的价值信息具有重要意义。针对于遥感图像的复杂场景分类,提出了一种基于卷积神经网络(convolutional neural network,CNN)模型的分类方法,在该方法中构建了8层CNN网络结构,并对输入图像进行预处理操作以进一步增强模型的适应性,且在模型分类器的选择问题上提供了Softmax和支持向量机2种分类器,使其能够自动化提取特征,避免了前期繁琐的图像处理和人工提取特征等过程。在UC Merced Land Use和Google of SIRI-WHU这2组数据集中进行实验,结果表明,相比于CNN with Overfeat feature和SRSCNN方法,该模型提高了2%以上的分类精度,且2种分类器的总体分类精度均能达到95%以上。