The advancement of artificial intelligence(AI)has truly stimulated the development and deployment of autonomous vehicles(AVs)in the transportation industry.Fueled by big data from various sensing devices and advanced ...The advancement of artificial intelligence(AI)has truly stimulated the development and deployment of autonomous vehicles(AVs)in the transportation industry.Fueled by big data from various sensing devices and advanced computing resources,AI has become an essential component of AVs for perceiving the surrounding environment and making appropriate decision in motion.To achieve goal of full automation(i.e.,self-driving),it is important to know how AI works in AV systems.Existing research have made great efforts in investigating different aspects of applying AI in AV development.However,few studies have offered the research community a thorough examination of current practices in implementing AI in AVs.Thus,this paper aims to shorten the gap by providing a comprehensive survey of key studies in this research avenue.Specifically,it intends to analyze their use of AIs in supporting the primary applications in AVs:1)perception;2)localization and mapping;and 3)decision making.It investigates the current practices to understand how AI can be used and what are the challenges and issues associated with their implementation.Based on the exploration of current practices and technology advances,this paper further provides insights into potential opportunities regarding the use of AI in conjunction with other emerging technologies:1)high definition maps,big data,and high performance computing;2)augmented reality(AR)/virtual reality(VR)enhanced simulation platform;and 3)5G communication for connected AVs.This paper is expected to offer a quick reference for researchers interested in understanding the use of AI in AV research.展开更多
精准的电力负荷预测有利于保障电力系统的安全、经济运行。针对现行预测算法存在的预测准确度低、模型耗时长等问题,提出一种基于随机森林(random forest,RF)算法和粗糙集理论(rough set theory,RST)的改进型深度学习(deeplearning, DL...精准的电力负荷预测有利于保障电力系统的安全、经济运行。针对现行预测算法存在的预测准确度低、模型耗时长等问题,提出一种基于随机森林(random forest,RF)算法和粗糙集理论(rough set theory,RST)的改进型深度学习(deeplearning, DL)短期负荷预测模型(RF-DL-RST)。该模型首先基于历史数据,利用随机森林算法提取影响负荷预测的关键特征量;然后将关键特征量和历史负荷值作为深度神经网络的输入、输出项进行训练,并通过粗糙集理论修正预测结果。最后,通过算例进行仿真验证,结果表明,该模型的预测准确度比单一的深度学习模型及不进行预测修正的模型更高。展开更多
新型电力系统的高比例可再生能源、高比例电力电子设备特性给电力系统分析与决策带来巨大挑战。以深度学习(deep learning,DL)为代表的数据驱动技术擅长应对大规模高维非线性数据建模问题,在电力系统分析与决策的应用愈发受到业界的关...新型电力系统的高比例可再生能源、高比例电力电子设备特性给电力系统分析与决策带来巨大挑战。以深度学习(deep learning,DL)为代表的数据驱动技术擅长应对大规模高维非线性数据建模问题,在电力系统分析与决策的应用愈发受到业界的关注。作为近年来的热门分支之一,图深度学习(graph deep learning,GDL)将DL技术拓展到了不规则拓扑关联数据的处理,加快DL技术实用化的步伐。该文对电力系统分析与决策各领域的任务需求、DL应用现状做了简要归纳,结合GDL的发展脉络与前沿热点技术,全面总结GDL在电力系统分析与决策应用优势与不足,围绕通用性/迁移性、可靠性以及可解释性等方面探讨GDL框架的未来发展思路。展开更多
基金supported by the FundamentalResearch Funds for the Central Universities(2662019QD002)
文摘The advancement of artificial intelligence(AI)has truly stimulated the development and deployment of autonomous vehicles(AVs)in the transportation industry.Fueled by big data from various sensing devices and advanced computing resources,AI has become an essential component of AVs for perceiving the surrounding environment and making appropriate decision in motion.To achieve goal of full automation(i.e.,self-driving),it is important to know how AI works in AV systems.Existing research have made great efforts in investigating different aspects of applying AI in AV development.However,few studies have offered the research community a thorough examination of current practices in implementing AI in AVs.Thus,this paper aims to shorten the gap by providing a comprehensive survey of key studies in this research avenue.Specifically,it intends to analyze their use of AIs in supporting the primary applications in AVs:1)perception;2)localization and mapping;and 3)decision making.It investigates the current practices to understand how AI can be used and what are the challenges and issues associated with their implementation.Based on the exploration of current practices and technology advances,this paper further provides insights into potential opportunities regarding the use of AI in conjunction with other emerging technologies:1)high definition maps,big data,and high performance computing;2)augmented reality(AR)/virtual reality(VR)enhanced simulation platform;and 3)5G communication for connected AVs.This paper is expected to offer a quick reference for researchers interested in understanding the use of AI in AV research.
文摘精准的电力负荷预测有利于保障电力系统的安全、经济运行。针对现行预测算法存在的预测准确度低、模型耗时长等问题,提出一种基于随机森林(random forest,RF)算法和粗糙集理论(rough set theory,RST)的改进型深度学习(deeplearning, DL)短期负荷预测模型(RF-DL-RST)。该模型首先基于历史数据,利用随机森林算法提取影响负荷预测的关键特征量;然后将关键特征量和历史负荷值作为深度神经网络的输入、输出项进行训练,并通过粗糙集理论修正预测结果。最后,通过算例进行仿真验证,结果表明,该模型的预测准确度比单一的深度学习模型及不进行预测修正的模型更高。
文摘新型电力系统的高比例可再生能源、高比例电力电子设备特性给电力系统分析与决策带来巨大挑战。以深度学习(deep learning,DL)为代表的数据驱动技术擅长应对大规模高维非线性数据建模问题,在电力系统分析与决策的应用愈发受到业界的关注。作为近年来的热门分支之一,图深度学习(graph deep learning,GDL)将DL技术拓展到了不规则拓扑关联数据的处理,加快DL技术实用化的步伐。该文对电力系统分析与决策各领域的任务需求、DL应用现状做了简要归纳,结合GDL的发展脉络与前沿热点技术,全面总结GDL在电力系统分析与决策应用优势与不足,围绕通用性/迁移性、可靠性以及可解释性等方面探讨GDL框架的未来发展思路。