期刊文献+
共找到160篇文章
< 1 2 8 >
每页显示 20 50 100
基于DBN模型的遥感图像分类 被引量:72
1
作者 吕启 窦勇 +2 位作者 牛新 徐佳庆 夏飞 《计算机研究与发展》 EI CSCD 北大核心 2014年第9期1911-1918,共8页
遥感图像分类是地理信息系统(geographic information system,GIS)的关键技术,对城市规划与管理起到十分重要的作用.近年来,深度学习成为机器学习领域的一个新兴研究方向.深度学习采用模拟人脑多层结构的方式,对数据从低层到高层渐进地... 遥感图像分类是地理信息系统(geographic information system,GIS)的关键技术,对城市规划与管理起到十分重要的作用.近年来,深度学习成为机器学习领域的一个新兴研究方向.深度学习采用模拟人脑多层结构的方式,对数据从低层到高层渐进地进行特征提取,从而发掘数据在时间与空间上的规律,进而提高分类的准确性.深度信念网络(deep belief network,DBN)是一种得到广泛研究与应用的深度学习模型,它结合了无监督学习和有监督学习的优点,对高维数据具有较好的分类能力.提出一种基于DBN模型的遥感图像分类方法,并利用RADARSAT-2卫星6d的极化合成孔径雷达(synthetic aperture radar,SAR)图像进行了验证.实验表明,与支持向量机(SVM)及传统的神经网络(NN)方法相比,基于DBN模型的方法可以取得更好的分类效果. 展开更多
关键词 遥感图像 合成孔径雷达 地物分类 深度学习 受限玻尔兹曼机 深度信念网络
下载PDF
深度置信网络模型及应用研究综述 被引量:53
2
作者 刘方园 王水花 张煜东 《计算机工程与应用》 CSCD 北大核心 2018年第1期11-18,47,共9页
介绍深度置信网络(DBN)理论基础的发展,对比分析深层结构DBN与浅层网络结构的差异,最后引用多篇文献分析研究DBN在文字检测、人脸及表情识别领域和遥感图像领域的应用效果。全面介绍了深度学习模型DBN,深入分析DBN的构建与实际应用,为... 介绍深度置信网络(DBN)理论基础的发展,对比分析深层结构DBN与浅层网络结构的差异,最后引用多篇文献分析研究DBN在文字检测、人脸及表情识别领域和遥感图像领域的应用效果。全面介绍了深度学习模型DBN,深入分析DBN的构建与实际应用,为研究人员提供改进DBN的思路,以期在未来将其运用到更宽广的新兴领域中。 展开更多
关键词 深度置信网络 文字检测 人脸及表情识别 遥感图像领域
下载PDF
基于优化数据处理的深度信念网络模型的入侵检测方法 被引量:46
3
作者 陈虹 万广雪 肖振久 《计算机应用》 CSCD 北大核心 2017年第6期1636-1643,1656,共9页
针对目前网络中存在的对已知攻击类型的入侵检测具有较高的检测率,但对新出现的攻击类型难以识别的缺陷问题,提出了一种基于优化数据处理的深度信念网络(DBN)模型的入侵检测方法。该方法在不破坏已学习过的知识和不严重影响检测实时性... 针对目前网络中存在的对已知攻击类型的入侵检测具有较高的检测率,但对新出现的攻击类型难以识别的缺陷问题,提出了一种基于优化数据处理的深度信念网络(DBN)模型的入侵检测方法。该方法在不破坏已学习过的知识和不严重影响检测实时性的基础上,分别对数据处理和方法模型进行改进,以解决上述问题。首先,将经过概率质量函数(PMF)编码和MaxMin归一化处理的数据应用于DBN模型中;然后,通过固定其他参数不变而变化一种参数和交叉验证的方式选择相对最优的DBN结构对未知攻击类型进行检测;最后,在NSL-KDD数据集上进行了验证。实验结果表明,数据的优化处理能够使DBN模型提高分类精度,基于DBN的入侵检测方法具有良好的自适应性,对未知样本具有较高的识别能力。在检测实时性上,所提方法与支持向量机(SVM)算法和反向传播(BP)网络算法相当。 展开更多
关键词 入侵检测 优化数据处理 深度学习 深度信念网络 未知攻击检测
下载PDF
基于PSO改进深度置信网络的滚动轴承故障诊断 被引量:44
4
作者 李益兵 王磊 江丽 《振动与冲击》 EI CSCD 北大核心 2020年第5期89-96,共8页
针对深度置信网络(Deep Belief Network,DBN)用于轴承故障诊断时,网络层结构调试比较费时等问题,提出一种基于粒子群优化(Particle Swarm Optimization,PSO)的DBN算法,以及基于该算法的轴承故障诊断模型。该模型利用PSO算法优选DBN网络... 针对深度置信网络(Deep Belief Network,DBN)用于轴承故障诊断时,网络层结构调试比较费时等问题,提出一种基于粒子群优化(Particle Swarm Optimization,PSO)的DBN算法,以及基于该算法的轴承故障诊断模型。该模型利用PSO算法优选DBN网络结构,并通过自适应时刻估计法微调模型参数,随后运用具有最优结构的DBN模型直接从原始振动信号中提取低维故障特征,并将其输入到Soft-max分类器中识别轴承的故障模式。该算法与支持向量机、BP神经网络、DBN、堆叠降噪自编码等方法进行对比分析,实验结果表明,PSO改进的DBN算法具有更高的准确率以及更好的鲁棒性。 展开更多
关键词 深度置信网络(dbn) 粒子群优化算法(PSO) 自适应时刻估计 滚动轴承 故障诊断
下载PDF
基于改进VMD和深度置信网络的风机易损部件故障预警 被引量:37
5
作者 郑小霞 陈广宁 +1 位作者 任浩翰 李东东 《振动与冲击》 EI CSCD 北大核心 2019年第8期153-160,179,共9页
考虑到风电机组运行时监测到的轴承、齿轮等易损部件的振动信号早期故障特征微弱且难以提取,提出了基于变分模态分解的风机易损部件故障特征提取方法,并采用深度置信网络对故障进行预警。为克服变分模态分解参数选取对特征提取效果的影... 考虑到风电机组运行时监测到的轴承、齿轮等易损部件的振动信号早期故障特征微弱且难以提取,提出了基于变分模态分解的风机易损部件故障特征提取方法,并采用深度置信网络对故障进行预警。为克服变分模态分解参数选取对特征提取效果的影响,基于各分量的相关系数确定分解个数,并采用粒子群算法来优化惩罚因子,将改进的变分模态分解用于振动信号进行分析处理;在此基础上,进一步提取各分量的排列熵和均方根值并将其构成的高维特征向量作为深度置信网络的输入,建立早期故障诊断模型;选取风机传动故障诊断实验平台早期故障数据和某风电机组的现场信号进行故障诊断分析。结果表明,该方法能准确稳定地提取风机易损部件故障信号的微弱特征,并进行故障有效识别,提高了风机易损部件故障预警的准确性。 展开更多
关键词 变分模态分解 多特征提取(VMD) 深度置信网络(dbn) 故障诊断
下载PDF
基于复合神经网络的GIS局放故障类型识别 被引量:37
6
作者 袁文海 刘彪 +6 位作者 徐浩 王喆 董小顺 汪沨 钟理鹏 司羽飞 夏鑫 《电力科学与技术学报》 CAS 北大核心 2021年第4期157-164,共8页
气体绝缘金属封闭开关设备(GIS)局部放电故障类型识别是故障预警和制定检修计划的重要基础,对维护电力设备的安全稳定运行意义重大。在此背景下,首先分析常见的几种GIS故障类型;然后,在超高频传感器采集到的图谱信号处理和分类上,由于... 气体绝缘金属封闭开关设备(GIS)局部放电故障类型识别是故障预警和制定检修计划的重要基础,对维护电力设备的安全稳定运行意义重大。在此背景下,首先分析常见的几种GIS故障类型;然后,在超高频传感器采集到的图谱信号处理和分类上,由于卷积神经网络(CNN)和深度置信网络(DBN)融合而成的复合神经网络模型可以快速实现有效特征信号的提取和故障类型准确分类,因此该文融合CNN和DBN,建立复合神经网络的主体结构,并利用该网络进行GIS局部放电故障类型识别;最后进行实验验证。结果表明该复合神经网络模型识别故障的准确性最高可达99%。 展开更多
关键词 GIS设备 特征图像 卷积神经网络 深度置信网络 模型训练
下载PDF
基于DBN特征提取的模拟电路早期故障诊断方法 被引量:33
7
作者 张朝龙 何怡刚 杜博伦 《仪器仪表学报》 EI CAS CSCD 北大核心 2019年第10期112-119,共8页
针对当前模拟电路早期故障诊断中特征提取方法的不足,提出了应用深度置信网络(deep belief network,DBN)进行特征提取的方法。利用混沌粒子群优化算法,对DBN中受限玻尔兹曼机的学习率开展优化,进一步提升特征提取的性能。相比于其他常... 针对当前模拟电路早期故障诊断中特征提取方法的不足,提出了应用深度置信网络(deep belief network,DBN)进行特征提取的方法。利用混沌粒子群优化算法,对DBN中受限玻尔兹曼机的学习率开展优化,进一步提升特征提取的性能。相比于其他常用的特征提取方法,提出的DBN特征提取方法可提取出早期故障深度和本质的特征,且具有相同的故障聚集程度高、不同故障的分离能力极为明显的特点。应用二级四运放双二阶低通滤波器仿真电路和Sallen-Key带通滤波器电路板进行早期故障诊断实验,得到的故障诊断正确率分别为98.13%和100%。 展开更多
关键词 模拟电路 早期故障诊断 深度置信网络 特征提取 混沌粒子群优化
下载PDF
基于DBN与对象融合的遥感图像变化检测方法 被引量:32
8
作者 窦方正 孙汉昌 +2 位作者 孙显 刁文辉 付琨 《计算机工程》 CAS CSCD 北大核心 2018年第4期294-298,304,共6页
在高分辨率光学遥感图像变化检测中,多数面向对象的方法只能利用简单的特征组合得到对象特征,难以进行高层特征的设计和提取。针对该问题,提出一种基于深度置信网络和对象融合的图像变化检测方法。将变化检测转化为二分类问题,并把图像... 在高分辨率光学遥感图像变化检测中,多数面向对象的方法只能利用简单的特征组合得到对象特征,难以进行高层特征的设计和提取。针对该问题,提出一种基于深度置信网络和对象融合的图像变化检测方法。将变化检测转化为二分类问题,并把图像像素作为分类单元,在特征学习和分类阶段设计多尺度的图像特征学习和分类方法,以充分利用图像目标的上下文信息。在此基础上设计基于对象的分类融合方法,对利用深度置信网络分类得到的结果进行融合,从而减小局部噪声的影响。在QucikBird影像数据集上的实验结果表明,该方法可有效提高图像变化检测的准确率。 展开更多
关键词 图像变化检测 遥感图像 深度置信网络 对象融合 多尺度特征
下载PDF
集成经验模态分解与深度学习的用户侧净负荷预测算法 被引量:32
9
作者 刘友波 吴浩 +3 位作者 刘挺坚 杨智宇 刘俊勇 李秋航 《电力系统自动化》 EI CSCD 北大核心 2021年第24期57-64,共8页
随着用户侧分布式能源发电容量增长,配电网净负荷需求预测面临着更大困难。为此,提出一种改进的自适应噪声的完全集成经验模态分解(CEEMDAN)和深度信念网络(DBN)结合的用户侧净负荷预测方法。首先,通过CEEMDAN将原始净负荷数据分解为若... 随着用户侧分布式能源发电容量增长,配电网净负荷需求预测面临着更大困难。为此,提出一种改进的自适应噪声的完全集成经验模态分解(CEEMDAN)和深度信念网络(DBN)结合的用户侧净负荷预测方法。首先,通过CEEMDAN将原始净负荷数据分解为若干个频率、幅值不一的本征模态函数(IMF)。然后,配合机器学习智能算法,使用DBN逐一对各个IMF分量进行特征提取和时序预测。最后,将多个目标预测结果累加得到最终用户侧短期净负荷预测结果。采用某地区实际数据进行算例分析,验证了所提CEEMDAN-DBN独立预测模型与直接预测相比,能够辨识各频率负荷分量特性,提高分布式能源与负荷耦合性增强背景下的负荷预测精度。 展开更多
关键词 净负荷预测 自适应噪声的完全集成经验模态分解 深度信念网络 时序预测
下载PDF
基于Gabor小波与深度信念网络的人脸识别方法 被引量:31
10
作者 柴瑞敏 曹振基 《计算机应用》 CSCD 北大核心 2014年第9期2590-2594,共5页
特征提取与模式分类是人脸识别的两个关键问题。针对人脸识别中的高维和小样本问题,从人脸特征的提取与降维算法入手,提出基于受限玻尔兹曼机(RBM)的二次特征提取及降维算法模型。首先把图像均匀分成若干局部图像块并进行量化,再对图像... 特征提取与模式分类是人脸识别的两个关键问题。针对人脸识别中的高维和小样本问题,从人脸特征的提取与降维算法入手,提出基于受限玻尔兹曼机(RBM)的二次特征提取及降维算法模型。首先把图像均匀分成若干局部图像块并进行量化,再对图像进行Gabor小波变换,通过RBM对得到的Gabor人脸特征进行编码,学习数据更本质的特征,从而达到对高维人脸特征降维的目的;并以此为基础提出基于深度信念网络(DBN)的多通道人脸识别算法。在ORL、UMIST和FERET人脸库上对不同样本规模和不同分辨率的图像进行实验,识别结果表明,与采用线性降维和浅层网络的方法相比,所提方法取得了较好的学习效率和很好的识别效果。 展开更多
关键词 特征提取 深度学习 GABOR小波 深度信念网络 降维 受限玻尔兹曼机
下载PDF
基于LSTM-DBN的航空发动机剩余寿命预测 被引量:31
11
作者 李京峰 陈云翔 +1 位作者 项华春 蔡忠义 《系统工程与电子技术》 EI CSCD 北大核心 2020年第7期1637-1644,共8页
针对航空发动机剩余寿命(remaining useful life,RUL)预测中多传感器监测数据维度高、规模大以及时间序列信息考虑不充分等问题,提出一种融合长短时记忆(long short-term memory,LSTM)网络和深度置信网络(deep belief network,DBN)的RU... 针对航空发动机剩余寿命(remaining useful life,RUL)预测中多传感器监测数据维度高、规模大以及时间序列信息考虑不充分等问题,提出一种融合长短时记忆(long short-term memory,LSTM)网络和深度置信网络(deep belief network,DBN)的RUL预测方法。首先,利用LSTM分别对单一传感器进行时间序列预测。其次,将预测结果整合输入到DBN进行健康指标提取。再次,结合健康指标预测曲线和失效阈值得到RUL预测结果。最后,利用商用模块化航空推进系统仿真数据集开展实验,并与已有方法进行对比分析,验证了该方法的可行性和有效性。 展开更多
关键词 长短时记忆网络 深度置信网络 健康指标 剩余寿命预测
下载PDF
深度置信网络在齿轮故障诊断中的应用 被引量:30
12
作者 陈保家 刘浩涛 +3 位作者 徐超 陈法法 肖文荣 赵春华 《中国机械工程》 EI CAS CSCD 北大核心 2019年第2期205-211,共7页
针对齿轮传动系统中齿轮等零部件易出现故障或失效等问题,提出了一种基于深度学习理论的齿轮传动系统故障诊断方法。首先利用深度置信网络强大的特征自提取能力,对齿轮传动系统的振动信号进行特征提取,然后通过DBNs的复杂映射表征能力... 针对齿轮传动系统中齿轮等零部件易出现故障或失效等问题,提出了一种基于深度学习理论的齿轮传动系统故障诊断方法。首先利用深度置信网络强大的特征自提取能力,对齿轮传动系统的振动信号进行特征提取,然后通过DBNs的复杂映射表征能力对故障信号进行故障判别。诊断实例表明,若不对齿轮振动的原始时域信号进行特征提取,直接利用DBNs对其进行诊断时,故障识别正确率只能达到60%左右;如果对时域信号进行简单的傅里叶变换后,再利用DBNs对处理后的振动信号频谱进行诊断分析,正确率能达到99.7%,从而证明了所提故障诊断方法的简易性和有效性。 展开更多
关键词 齿轮传动 特征提取 深度置信网络 故障诊断
下载PDF
基于改进深度置信网络的大棚冬枣病虫害预测模型 被引量:28
13
作者 张善文 张传雷 丁军 《农业工程学报》 EI CAS CSCD 北大核心 2017年第19期202-208,共7页
导致冬枣病虫害发生的原因很多而且很复杂,利用传统的数学方法和神经网络(neural network,NN)很难建立正确的病虫害预测模型。由于典型的深度置信网络(deep belief network,DBN)的各层之间缺乏有监督训练,使得网络误差逐层向上传递,降... 导致冬枣病虫害发生的原因很多而且很复杂,利用传统的数学方法和神经网络(neural network,NN)很难建立正确的病虫害预测模型。由于典型的深度置信网络(deep belief network,DBN)的各层之间缺乏有监督训练,使得网络误差逐层向上传递,降低了预测模型的预测率。针对这些问题,引入冬枣病虫害的先验信息,提出一种基于环境信息和改进DBN的冬枣病虫害预测模型。在该模型中,通过无监督训练和有监督微调从冬枣生长的环境信息序列中获取可表征冬枣病虫害发生的深层特征的隐层参数,并形成新的特征集,然后在预测模型的顶层通过一个后向传播神经网络(back propagation neural network,BPNN)进行病虫害预测。从2014—2017年的4 a时间内,利用农业物联网传感器采集30个大棚冬枣常见的2种虫害和3种病害发生的环境信息序列6 000多条,由此验证所提出的预测模型,平均预测正确率高达84.05%。与基于强模糊支持向量机、改进型NN和BPNN的3种病虫害预测模型进行了试验比较,预测正确率提高了20多个百分点。试验结果表明,该模型极大提高了大棚冬枣病虫害的预测正确率。该研究可为大棚冬枣病虫害预测提供技术参考。 展开更多
关键词 病害 预测 模型 冬枣生长环境信息 虫害 深度置信网络 改进深度置信网络
下载PDF
基于深度信念网络的船舶柴油机智能故障诊断 被引量:28
14
作者 仲国强 贾宝柱 +1 位作者 肖峰 王怀宇 《中国舰船研究》 CSCD 北大核心 2020年第3期136-142,184,共8页
[目的]为了提高船舶柴油机智能故障诊断的精度,引入深度学习方法,提出一种基于深度信念网络(DBN)的船用柴油机智能故障诊断方法。[方法]采用多层限制性玻尔兹曼机(RBM)堆叠成DBN,并采用对比散度方法对模型参数进行求解。通过无监督预训... [目的]为了提高船舶柴油机智能故障诊断的精度,引入深度学习方法,提出一种基于深度信念网络(DBN)的船用柴油机智能故障诊断方法。[方法]采用多层限制性玻尔兹曼机(RBM)堆叠成DBN,并采用对比散度方法对模型参数进行求解。通过无监督预训练和有监督微调的训练方法,从故障样本数据中提取深层次的隐性特征并获得较好的初始化参数。[结果]基于AVL BOOST船舶柴油机故障仿真实验进行样本数据分析,结果表明:DBN对训练样本集和测试样本集的故障识别率分别为98.26%和98.61%,比BP神经网络(BPNN)和支持向量机(SVM)具有更高的故障识别准确率和更好的泛化性能,可以避免浅层神经网络因随机初始化权值而陷入局部最小值和精度较低等问题。[结论]与BPNN和SVM相比,DBN更适用于船舶柴油机的智能故障诊断应用。 展开更多
关键词 船舶柴油机 故障分析 深度信念网络 深度学习
下载PDF
基于深度置信网络和双谱对角切片的低截获概率雷达信号识别 被引量:27
15
作者 王星 周一鹏 +2 位作者 周东青 陈忠辉 田元荣 《电子与信息学报》 EI CSCD 北大核心 2016年第11期2972-2976,共5页
基于深度置信网络(DBN)对信号双谱对角切片(BDS)结构特征进行学习,实现低截获概率(LPI)雷达信号识别。该方法首先建立基于受限玻尔兹曼机(RBM)的DBN模型,对LPI雷达信号的BDS数据进行逐层无监督贪心学习,然后运用后向传播(BP)机制在有监... 基于深度置信网络(DBN)对信号双谱对角切片(BDS)结构特征进行学习,实现低截获概率(LPI)雷达信号识别。该方法首先建立基于受限玻尔兹曼机(RBM)的DBN模型,对LPI雷达信号的BDS数据进行逐层无监督贪心学习,然后运用后向传播(BP)机制在有监督学习方式下根据学习误差对DBN模型参数进行微调,最后基于该BDS-DBN模型实现未知信号的分类和识别。理论分析和仿真结果表明,信噪比高于8 d B时,基于BDS和DBN的识别方法对调频连续波(FMCW),Frank,Costas,FSK/PSK 4类LPI信号的综合识别率保持在93.4%以上,高于传统的主成分分析加支持向量机法(PCA-SVM)和主成分分析加线性判别分析法(PCA-LDA)。 展开更多
关键词 低截获概率雷达 深度学习 深度置信网络 双谱对角切片 受限玻尔兹曼机
下载PDF
基于双树复小波和深度信念网络的轴承故障诊断 被引量:27
16
作者 张淑清 胡永涛 +3 位作者 姜安琦 李军锋 宿新爽 姜万录 《中国机械工程》 EI CAS CSCD 北大核心 2017年第5期532-536,543,共6页
提出了一种基于双树复小波(DTCWT)和深度信念网络(DBN)的轴承故障诊断新方法。采用DTCWT对轴承振动信号进行分解实验,结果表明DTCWT能够很好地将信号分解到不同频带。进而提取能量熵作为故障特征,采用DBN小样本分类模型对轴承故障进行分... 提出了一种基于双树复小波(DTCWT)和深度信念网络(DBN)的轴承故障诊断新方法。采用DTCWT对轴承振动信号进行分解实验,结果表明DTCWT能够很好地将信号分解到不同频带。进而提取能量熵作为故障特征,采用DBN小样本分类模型对轴承故障进行分类,并与传统分类器进行比较,结果表明该方法能准确识别不同故障类型,扩展了DBN在机械故障诊断中的应用。 展开更多
关键词 双树复小波 深度信念网络 受限波尔兹曼机 故障诊断
下载PDF
深度学习驱动的电力系统暂态稳定预防控制进化算法 被引量:26
17
作者 苏童 刘友波 +3 位作者 沈晓东 刘挺坚 邱高 刘俊勇 《中国电机工程学报》 EI CSCD 北大核心 2020年第12期3813-3823,共11页
针对暂态稳定预防控制在线计算快速性要求和时域方程计算复杂性之间的矛盾,将深度置信网络(deepbelief network,DBN)和NSGA-Ⅱ引入暂态稳定预防控制中,提出深度学习驱动的电力系统暂态稳定预防控制进化算法。该算法包含一套基于深度置... 针对暂态稳定预防控制在线计算快速性要求和时域方程计算复杂性之间的矛盾,将深度置信网络(deepbelief network,DBN)和NSGA-Ⅱ引入暂态稳定预防控制中,提出深度学习驱动的电力系统暂态稳定预防控制进化算法。该算法包含一套基于深度置信网络的电力系统暂态稳定评估器,可在无需人为干预情况下,通过"无监督预训练–参数调优"的训练方式,精确拟合发电机出力和系统暂态稳定系数(transient stability index,TSI)间映射关系,并以深度网络结构代替传统暂态稳定约束最优潮流(transientstability constrained optimal power flow,TSCOPF)模型中非线性微分代数方程计算与繁杂的暂稳校验。区别于传统机器学习方法通常用于状态映射和匹配辨识,该文将训练后的暂态稳定评估器作为非显式"黑盒约束"(box-constraints)嵌入进化算法的迭代寻优过程中,实现了预想故障集约束下,以控制代价最小为目标的发电再调度预防控制优化策略的数据驱动求取技术,亦能为类似安全性、稳定性、可靠性规则嵌入对应控制策略模型并高效求解提供方法参考。IEEE 39、68、140节点算例测试表明,所提去模型化(model-free)方法结合进化算法能有效降低TSCOPF模型计算复杂度,快速、稳定地获取运行方式优化调整策略,可为暂稳预防控制在线决策提供新工具。 展开更多
关键词 暂态稳定 预防控制 深度学习 深度置信网络 进化算法 NSGA-Ⅱ
下载PDF
基于自适应判别深度置信网络的棉花病虫害预测 被引量:26
18
作者 王献锋 张传雷 +1 位作者 张善文 朱义海 《农业工程学报》 EI CAS CSCD 北大核心 2018年第14期157-164,共8页
作物病虫害预测是病虫害防治的前提,利用深度学习预测作物病虫害是一个有效且具有挑战性的研究课题。该文针对深度置信网络(deep belief network,DBN)在作物病虫害预测中的训练耗时长和容易收敛于局部最优解等问题,将自适应DBN和判别限... 作物病虫害预测是病虫害防治的前提,利用深度学习预测作物病虫害是一个有效且具有挑战性的研究课题。该文针对深度置信网络(deep belief network,DBN)在作物病虫害预测中的训练耗时长和容易收敛于局部最优解等问题,将自适应DBN和判别限制玻尔兹曼机(restricted boltzmann machine,RBM)相结合,利用棉花生长的环境信息,提出一种基于自适应判别DBN的棉花病虫害预测模型。该模型由3层RBM网络和一个判别RBM(discriminative restricted boltzmann machine,DRBM)网络组成,通过3层RBM网络将棉花生长的环境信息数据转换到与病虫害发生相关的特征空间,通过自动学习得到层次化的特征表示,再由DRBM预测棉花病虫害的发生概率。该模型将自适应学习率引入到对比差度算法中,通过自动调整学习步长,解决了在传统DBN模型训练时学习率选择难的问题;在学习过程中通过在DRBM中引入样本的类别信息,使得训练具有类别针对性,弱化传统RBM无监督训练时易出现特征同质化问题,提高了模型的预测准确率。对实际棉花的"棉铃虫、棉蚜虫、红蜘蛛"虫害和"黄萎病、枯萎病"病害的平均预测准确率为82.840%,与传统BP神经网络模型(BPNN)、强模糊支持向量机模型(SFSVM)和RBF神经网络模型(RBFNN)分别提高19.248%,24.916%和27.774%。 展开更多
关键词 病害 预测 模型 棉花 深度置信网络 自适应判别
下载PDF
基于奇异值分解和深度信度网络多分类器的滚动轴承故障诊断方法 被引量:25
19
作者 李艳峰 王新晴 +1 位作者 张梅军 朱会杰 《上海交通大学学报》 EI CAS CSCD 北大核心 2015年第5期681-686,694,共7页
提出一种基于奇异值分解(SVD)和深度信度网络(DBN)多分类器的滚动轴承故障诊断方法.对滚动轴承的振动信号进行相空间重构,得到相应的特征矩阵;对特征矩阵进行SVD分解,并用所得整个奇异值序列构造特征向量,建立DBN多分类器模型,以实现滚... 提出一种基于奇异值分解(SVD)和深度信度网络(DBN)多分类器的滚动轴承故障诊断方法.对滚动轴承的振动信号进行相空间重构,得到相应的特征矩阵;对特征矩阵进行SVD分解,并用所得整个奇异值序列构造特征向量,建立DBN多分类器模型,以实现滚动轴承的故障诊断;同时,将所提出的方法与DBN、反向传播神经网络、支持向量机等算法进行对比.结果表明,所提出的方法能够更加稳定、可靠地识别滚动轴承的故障类型和故障程度. 展开更多
关键词 滚动轴承 故障诊断 奇异值分解 深度信度网络 多分类器
下载PDF
Improved Deep Belief Network and Model Interpretation Method for Power System Transient Stability Assessment 被引量:23
20
作者 Shuang Wu Le Zheng +2 位作者 Wei Hu Rui Yu Baisi Liu 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2020年第1期27-37,共11页
The real-time transient stability assessment(TSA)and emergency control are effective measures to suppress accident expansion,prevent system instability,and avoid large-scale power outages in the event of power system ... The real-time transient stability assessment(TSA)and emergency control are effective measures to suppress accident expansion,prevent system instability,and avoid large-scale power outages in the event of power system failure.However,real-time assessment is extremely demanding on computing speed,and the traditional method is not competent.In this paper,an improved deep belief network(DBN)is proposed for the fast assessment of transient stability,which considers the structural characteristics of power system in the construction of loss function.Deep learning has been effective in many fields,but usually is considered as a black-box model.From the perspective of machine learning interpretation,this paper proposes a local linear interpreter(LLI)model,and tries to give a reasonable interpretation of the relationship between the system features and the assessment result,and illustrates the conversion process from the input feature space to the high-dimension representation space.The proposed method is tested on an IEEE new England test system and demonstrated on a regional power system in China.The result demonstrates that the proposed method has rapidity,high accuracy and good interpretability in transient stability assessment. 展开更多
关键词 Transient stability assessment(TSA) representation learning deep belief network(dbn) local linear interpretation(LLI) visualization EMERGENCY control
原文传递
上一页 1 2 8 下一页 到第
使用帮助 返回顶部