遥感图像分类是地理信息系统(geographic information system,GIS)的关键技术,对城市规划与管理起到十分重要的作用.近年来,深度学习成为机器学习领域的一个新兴研究方向.深度学习采用模拟人脑多层结构的方式,对数据从低层到高层渐进地...遥感图像分类是地理信息系统(geographic information system,GIS)的关键技术,对城市规划与管理起到十分重要的作用.近年来,深度学习成为机器学习领域的一个新兴研究方向.深度学习采用模拟人脑多层结构的方式,对数据从低层到高层渐进地进行特征提取,从而发掘数据在时间与空间上的规律,进而提高分类的准确性.深度信念网络(deep belief network,DBN)是一种得到广泛研究与应用的深度学习模型,它结合了无监督学习和有监督学习的优点,对高维数据具有较好的分类能力.提出一种基于DBN模型的遥感图像分类方法,并利用RADARSAT-2卫星6d的极化合成孔径雷达(synthetic aperture radar,SAR)图像进行了验证.实验表明,与支持向量机(SVM)及传统的神经网络(NN)方法相比,基于DBN模型的方法可以取得更好的分类效果.展开更多
基于深度置信网络(DBN)对信号双谱对角切片(BDS)结构特征进行学习,实现低截获概率(LPI)雷达信号识别。该方法首先建立基于受限玻尔兹曼机(RBM)的DBN模型,对LPI雷达信号的BDS数据进行逐层无监督贪心学习,然后运用后向传播(BP)机制在有监...基于深度置信网络(DBN)对信号双谱对角切片(BDS)结构特征进行学习,实现低截获概率(LPI)雷达信号识别。该方法首先建立基于受限玻尔兹曼机(RBM)的DBN模型,对LPI雷达信号的BDS数据进行逐层无监督贪心学习,然后运用后向传播(BP)机制在有监督学习方式下根据学习误差对DBN模型参数进行微调,最后基于该BDS-DBN模型实现未知信号的分类和识别。理论分析和仿真结果表明,信噪比高于8 d B时,基于BDS和DBN的识别方法对调频连续波(FMCW),Frank,Costas,FSK/PSK 4类LPI信号的综合识别率保持在93.4%以上,高于传统的主成分分析加支持向量机法(PCA-SVM)和主成分分析加线性判别分析法(PCA-LDA)。展开更多
The real-time transient stability assessment(TSA)and emergency control are effective measures to suppress accident expansion,prevent system instability,and avoid large-scale power outages in the event of power system ...The real-time transient stability assessment(TSA)and emergency control are effective measures to suppress accident expansion,prevent system instability,and avoid large-scale power outages in the event of power system failure.However,real-time assessment is extremely demanding on computing speed,and the traditional method is not competent.In this paper,an improved deep belief network(DBN)is proposed for the fast assessment of transient stability,which considers the structural characteristics of power system in the construction of loss function.Deep learning has been effective in many fields,but usually is considered as a black-box model.From the perspective of machine learning interpretation,this paper proposes a local linear interpreter(LLI)model,and tries to give a reasonable interpretation of the relationship between the system features and the assessment result,and illustrates the conversion process from the input feature space to the high-dimension representation space.The proposed method is tested on an IEEE new England test system and demonstrated on a regional power system in China.The result demonstrates that the proposed method has rapidity,high accuracy and good interpretability in transient stability assessment.展开更多
文摘基于深度置信网络(DBN)对信号双谱对角切片(BDS)结构特征进行学习,实现低截获概率(LPI)雷达信号识别。该方法首先建立基于受限玻尔兹曼机(RBM)的DBN模型,对LPI雷达信号的BDS数据进行逐层无监督贪心学习,然后运用后向传播(BP)机制在有监督学习方式下根据学习误差对DBN模型参数进行微调,最后基于该BDS-DBN模型实现未知信号的分类和识别。理论分析和仿真结果表明,信噪比高于8 d B时,基于BDS和DBN的识别方法对调频连续波(FMCW),Frank,Costas,FSK/PSK 4类LPI信号的综合识别率保持在93.4%以上,高于传统的主成分分析加支持向量机法(PCA-SVM)和主成分分析加线性判别分析法(PCA-LDA)。
基金supported by National Natural Science Foundation of China(No.51777104)the Science and Technology Project of the State Grid Corporation of China.
文摘The real-time transient stability assessment(TSA)and emergency control are effective measures to suppress accident expansion,prevent system instability,and avoid large-scale power outages in the event of power system failure.However,real-time assessment is extremely demanding on computing speed,and the traditional method is not competent.In this paper,an improved deep belief network(DBN)is proposed for the fast assessment of transient stability,which considers the structural characteristics of power system in the construction of loss function.Deep learning has been effective in many fields,but usually is considered as a black-box model.From the perspective of machine learning interpretation,this paper proposes a local linear interpreter(LLI)model,and tries to give a reasonable interpretation of the relationship between the system features and the assessment result,and illustrates the conversion process from the input feature space to the high-dimension representation space.The proposed method is tested on an IEEE new England test system and demonstrated on a regional power system in China.The result demonstrates that the proposed method has rapidity,high accuracy and good interpretability in transient stability assessment.