研究了安全通信意义下,单向译码转发(decode-and-forward,DF)协作无线网络的中继选择问题。针对窃听者既能获得信源发出的信号,又能窃取中继节点转发数据的通信系统,提出了3种中继选择方案来对抗窃听者,增强系统物理层安全性。其中,方...研究了安全通信意义下,单向译码转发(decode-and-forward,DF)协作无线网络的中继选择问题。针对窃听者既能获得信源发出的信号,又能窃取中继节点转发数据的通信系统,提出了3种中继选择方案来对抗窃听者,增强系统物理层安全性。其中,方案一选择到窃听者信噪比(signal-to-noise ratio,SNR)最小的中继节点;方案二为最大最小(max-min)选择方案,即选择信源到中继节点和中继节点到信宿的较差信噪比中最大值所对应的中继节点;方案三根据窃听信道和主信道的瞬时信道状态信息(channel state information,CSI)选择使得窃听网络有最大保密容量的中继节点。在对各方案的性能分析过程中,得到了各中继选择方案拦截概率的闭式表示,进一步对拦截概率作渐近分析,获得了各中继选择方案的分集阶数。具体地,方案一的分集阶数为1,另外2个中继选择方案的分集阶数均为中继节点个数M。数值结果验证了理论分析得到的结论。展开更多
提出了一种自适应无校验解码前传(decode and forward)协同通信方案,方案利用有限比特的反馈,基于最小化断线率(outage probability)这一目标,进行自适应功率分配。给出了完整信道信息反馈条件下的功率分配方案,得出其断线率性能,并以...提出了一种自适应无校验解码前传(decode and forward)协同通信方案,方案利用有限比特的反馈,基于最小化断线率(outage probability)这一目标,进行自适应功率分配。给出了完整信道信息反馈条件下的功率分配方案,得出其断线率性能,并以此作为有限反馈比特条件下的性能限;提出了少量比特反馈条件下的自适应发射功率分配方案,并通过仿真证明只需要少数几个反馈比特,就可以达到很大的性能提升。提出的两用户共用反馈信息的方案,与以往的针对中继信道设计的每用户采用不同的反馈信息方案相比,在总反馈比特数相同的情况下具有较大的性能增益。展开更多
In this paper a new method to improve performance of cooperative underwater acoustic (UWA) sensor networks will be introduced. The method is based on controlling and optimizing carrier frequencies which are used in da...In this paper a new method to improve performance of cooperative underwater acoustic (UWA) sensor networks will be introduced. The method is based on controlling and optimizing carrier frequencies which are used in data links between network nods. In UWA channels Pathloss and noise power spectrum density (psd) are related to carrier frequency. Therefore, unlike radio communications, in UWA Communications signal to noise ratio (SNR) is related to frequency besides propagation link length. In such channels an optimum frequency in whole frequency band and link lengths cannot be found. In Cooperative transmission, transmitter sends one copy of transmitted data packets to relay node. Then relay depending on cooperation scheme, amplifies or decodes each data packet and retransmit it to destination. Receiver uses and combines both received signals to estimate transmitted data. This paper wants to propose a new method to decrease network power consumptions by controlling and sub-optimizing transmission frequency based on link length. For this purpose, underwater channel parameters is simulated and analyzed in 1km to 10km lengths (midrange channel). Then link lengths sub categorized and in each category, optimum frequency is computed. With these sub optimum frequencies, sensors and base station can adaptively control their carrier frequencies based on link length and decrease network’s power consumptions. Finally Different Cooperative transmission schemes “Decode and Forward (DF)” and “Amplify and Forward (AF)”, are simulated in UWA wireless Sensor network with and without the new method. In receiver maximum ratio combiner (MRC) is used to combining received signals and making data estimations. Simulations show that the new method, called AFC cooperative UWA communication, can improve performance of underwater acoustic wireless sensor networks up to 40.14%.展开更多
In this paper, we investigate power allocation problem with the use of transmit beamforming in a dual hop MISO (multiple input single output) relay channel. We consider either amplify and forward (AF) or decode and fo...In this paper, we investigate power allocation problem with the use of transmit beamforming in a dual hop MISO (multiple input single output) relay channel. We consider either amplify and forward (AF) or decode and forward (DF) cooperative protocols at the relay and optimize the power allocated to the relay and the source, under total transmit power constraint, to minimize the bit error rate (BER) of relaying system. Cooperative communication is viewed as a method for increasing diversity gain and reducing end to end path loss. The use of relay can create a virtual antenna array so that it allows users to exploit the advantages of multiple input multiple output (MIMO) techniques. In this work, we solve cooperative ratio, which is defined as the ratio power used for cooperative transmission over the total power. This approach is then compared to an equal power assignment method and its performance enhancement is verified by simulation results.展开更多
This paper aims to avoid the interference imposed by the secondary user on a primary user in Cognitive Radio Network (CRN). In CRN, the interference from secondary user enforced on primary user mainly depends on spect...This paper aims to avoid the interference imposed by the secondary user on a primary user in Cognitive Radio Network (CRN). In CRN, the interference from secondary user enforced on primary user mainly depends on spectral interval between primary and secondary systems. Moreover, it also depends on the power allocated to the secondary user. In order to avoid interference imposed by secondary user on primary user, a Hybrid Relaying Protocol for Joint Power and Subcarrier Allocation for Orthogonal Frequency Division Multiplexing (OFDM) based Cognitive Radio Networks is proposed. In hybrid relaying protocol, a secondary user uses amplify and forward (AF) protocol and decode and forward (DF) protocol based on the requirement to maximize network throughput. A greedy algorithm is proposed for the selection of relay to get the optimal solution. Moreover, an efficient hybrid power and subcarrier algorithm is used by considering interference constraint imposed by cognitive network to the primary user.展开更多
This article studies the closed-form expressions of outage performance for opportunistic relay under aggregate power constraint in decode-and-forward (DF) relay networks over Rayleigh fading channels, assuming that ...This article studies the closed-form expressions of outage performance for opportunistic relay under aggregate power constraint in decode-and-forward (DF) relay networks over Rayleigh fading channels, assuming that multiple antennas are available at the relay node. According to whether instantaneous signal-to-noise ratio (SNR) or average SNR can be utilized for relay selection, two opportunistic relay schemes, opportunistic multi-antenna relay selection (OMRS) and average best relay selection (ABRS) are proposed. The performances of both two schemes are evaluated by means of theoretical analysis and simulation, it is observed that OMRS is outage-optimal among multi-antenna relay selection schemes and closely approaches the beamforming (BF) scheme known as theoretical outage-optimal. Compared with previous single-antenna opportunistic relaying (OR) scheme, OMRS brings remarkable performance improvement, which is obtained from maximum ratio combining (MRC) and beamforming techniques. It is also shown that the performance of ABRS in asymmetric channels is close to OMRS in the low and median SNR range.展开更多
IEEE 802.16j MMR WiMAX network introduces multi-hop relay architecture, which involves cooperative relay stations focusing on increasing the network throughput and coverage. Relay selection algorithms can be used to c...IEEE 802.16j MMR WiMAX network introduces multi-hop relay architecture, which involves cooperative relay stations focusing on increasing the network throughput and coverage. Relay selection algorithms can be used to choose the optimal relay, which help in reducing the computational complexity during the signal processing operation of the wireless network. In this research work, a conventional Amplify-Forward (AF)/Decode-Forward (DF) assisted multi-relay IEEE 802.16j WiMAX network is considered. The effects of relay selection algorithms on the performance metrics such as Symbol Error Rate (SER) and channel capacity are investigated in detail through simulation-based study. Further, the performance of this network utilizing the proposed relay selection algo- rithms, namely threshold based max_rain and threshold based harmonic mean of SNR, are compared with the existing max_rain and harmonic mean of SNR based algorithms. Standard diversity combining techniques such as Maximal Ratio Combining (MRC) and Selection Combining (SC) are used for combining the transmitted signal at the receiver. In addition, the impact of relay locations on the performance metrics are explored. It is observed that both the proposed threshold based max_min and threshold based harmonic mean of SNR based relay selection algorithms outperform the max_rain and harmonic mean of SNR based algorithms, as both the SER and channel capacity for the considered multi-relay WiMAX network is improved significantly. Further, this extensive study and analysis will be beneficial for the design of MMR WiMAX networks.展开更多
文摘研究了安全通信意义下,单向译码转发(decode-and-forward,DF)协作无线网络的中继选择问题。针对窃听者既能获得信源发出的信号,又能窃取中继节点转发数据的通信系统,提出了3种中继选择方案来对抗窃听者,增强系统物理层安全性。其中,方案一选择到窃听者信噪比(signal-to-noise ratio,SNR)最小的中继节点;方案二为最大最小(max-min)选择方案,即选择信源到中继节点和中继节点到信宿的较差信噪比中最大值所对应的中继节点;方案三根据窃听信道和主信道的瞬时信道状态信息(channel state information,CSI)选择使得窃听网络有最大保密容量的中继节点。在对各方案的性能分析过程中,得到了各中继选择方案拦截概率的闭式表示,进一步对拦截概率作渐近分析,获得了各中继选择方案的分集阶数。具体地,方案一的分集阶数为1,另外2个中继选择方案的分集阶数均为中继节点个数M。数值结果验证了理论分析得到的结论。
文摘提出了一种自适应无校验解码前传(decode and forward)协同通信方案,方案利用有限比特的反馈,基于最小化断线率(outage probability)这一目标,进行自适应功率分配。给出了完整信道信息反馈条件下的功率分配方案,得出其断线率性能,并以此作为有限反馈比特条件下的性能限;提出了少量比特反馈条件下的自适应发射功率分配方案,并通过仿真证明只需要少数几个反馈比特,就可以达到很大的性能提升。提出的两用户共用反馈信息的方案,与以往的针对中继信道设计的每用户采用不同的反馈信息方案相比,在总反馈比特数相同的情况下具有较大的性能增益。
文摘In this paper a new method to improve performance of cooperative underwater acoustic (UWA) sensor networks will be introduced. The method is based on controlling and optimizing carrier frequencies which are used in data links between network nods. In UWA channels Pathloss and noise power spectrum density (psd) are related to carrier frequency. Therefore, unlike radio communications, in UWA Communications signal to noise ratio (SNR) is related to frequency besides propagation link length. In such channels an optimum frequency in whole frequency band and link lengths cannot be found. In Cooperative transmission, transmitter sends one copy of transmitted data packets to relay node. Then relay depending on cooperation scheme, amplifies or decodes each data packet and retransmit it to destination. Receiver uses and combines both received signals to estimate transmitted data. This paper wants to propose a new method to decrease network power consumptions by controlling and sub-optimizing transmission frequency based on link length. For this purpose, underwater channel parameters is simulated and analyzed in 1km to 10km lengths (midrange channel). Then link lengths sub categorized and in each category, optimum frequency is computed. With these sub optimum frequencies, sensors and base station can adaptively control their carrier frequencies based on link length and decrease network’s power consumptions. Finally Different Cooperative transmission schemes “Decode and Forward (DF)” and “Amplify and Forward (AF)”, are simulated in UWA wireless Sensor network with and without the new method. In receiver maximum ratio combiner (MRC) is used to combining received signals and making data estimations. Simulations show that the new method, called AFC cooperative UWA communication, can improve performance of underwater acoustic wireless sensor networks up to 40.14%.
文摘In this paper, we investigate power allocation problem with the use of transmit beamforming in a dual hop MISO (multiple input single output) relay channel. We consider either amplify and forward (AF) or decode and forward (DF) cooperative protocols at the relay and optimize the power allocated to the relay and the source, under total transmit power constraint, to minimize the bit error rate (BER) of relaying system. Cooperative communication is viewed as a method for increasing diversity gain and reducing end to end path loss. The use of relay can create a virtual antenna array so that it allows users to exploit the advantages of multiple input multiple output (MIMO) techniques. In this work, we solve cooperative ratio, which is defined as the ratio power used for cooperative transmission over the total power. This approach is then compared to an equal power assignment method and its performance enhancement is verified by simulation results.
文摘This paper aims to avoid the interference imposed by the secondary user on a primary user in Cognitive Radio Network (CRN). In CRN, the interference from secondary user enforced on primary user mainly depends on spectral interval between primary and secondary systems. Moreover, it also depends on the power allocated to the secondary user. In order to avoid interference imposed by secondary user on primary user, a Hybrid Relaying Protocol for Joint Power and Subcarrier Allocation for Orthogonal Frequency Division Multiplexing (OFDM) based Cognitive Radio Networks is proposed. In hybrid relaying protocol, a secondary user uses amplify and forward (AF) protocol and decode and forward (DF) protocol based on the requirement to maximize network throughput. A greedy algorithm is proposed for the selection of relay to get the optimal solution. Moreover, an efficient hybrid power and subcarrier algorithm is used by considering interference constraint imposed by cognitive network to the primary user.
基金supported by the Hi-Tech Research and Development Program of China (2009AA01Z247,2007AA01Z265)the National Natural Science Foundation of China (60972076)
文摘This article studies the closed-form expressions of outage performance for opportunistic relay under aggregate power constraint in decode-and-forward (DF) relay networks over Rayleigh fading channels, assuming that multiple antennas are available at the relay node. According to whether instantaneous signal-to-noise ratio (SNR) or average SNR can be utilized for relay selection, two opportunistic relay schemes, opportunistic multi-antenna relay selection (OMRS) and average best relay selection (ABRS) are proposed. The performances of both two schemes are evaluated by means of theoretical analysis and simulation, it is observed that OMRS is outage-optimal among multi-antenna relay selection schemes and closely approaches the beamforming (BF) scheme known as theoretical outage-optimal. Compared with previous single-antenna opportunistic relaying (OR) scheme, OMRS brings remarkable performance improvement, which is obtained from maximum ratio combining (MRC) and beamforming techniques. It is also shown that the performance of ABRS in asymmetric channels is close to OMRS in the low and median SNR range.
文摘IEEE 802.16j MMR WiMAX network introduces multi-hop relay architecture, which involves cooperative relay stations focusing on increasing the network throughput and coverage. Relay selection algorithms can be used to choose the optimal relay, which help in reducing the computational complexity during the signal processing operation of the wireless network. In this research work, a conventional Amplify-Forward (AF)/Decode-Forward (DF) assisted multi-relay IEEE 802.16j WiMAX network is considered. The effects of relay selection algorithms on the performance metrics such as Symbol Error Rate (SER) and channel capacity are investigated in detail through simulation-based study. Further, the performance of this network utilizing the proposed relay selection algo- rithms, namely threshold based max_rain and threshold based harmonic mean of SNR, are compared with the existing max_rain and harmonic mean of SNR based algorithms. Standard diversity combining techniques such as Maximal Ratio Combining (MRC) and Selection Combining (SC) are used for combining the transmitted signal at the receiver. In addition, the impact of relay locations on the performance metrics are explored. It is observed that both the proposed threshold based max_min and threshold based harmonic mean of SNR based relay selection algorithms outperform the max_rain and harmonic mean of SNR based algorithms, as both the SER and channel capacity for the considered multi-relay WiMAX network is improved significantly. Further, this extensive study and analysis will be beneficial for the design of MMR WiMAX networks.