Compared to conventional hyperthermia that is limited by low selectivity and severe side effects,nano-enabled hyperthermia yields great potentials to tackle these limitations for cancer treatment.Another major advance...Compared to conventional hyperthermia that is limited by low selectivity and severe side effects,nano-enabled hyperthermia yields great potentials to tackle these limitations for cancer treatment.Another major advance is the observation of immunological responses associated with nano-enabled hyperthermia,which introduces a new avenue,allowing a potential paradigm shift from the acutely effective and cytotoxicity-centric response to the next-phase discovery,i.e.,long-lasting and/or systemic anti-tumor immunity.This perspective first discusses the temperature-gradient and the spatially-structured immunological landscape in solid tumors receiving nano-enabled hyperthermia.This includes the discussion about underlying mechanism such as immunogenic cell death,which initiates a profound immunological chain reaction.In order to propagate the immune activation as a viable therapeutic principle,we further discussed the tumor type-specific complexity in the immunological tumor microenvironment,including the creative design of nano-enabled combination therapy to synergize with nano-enabled hyperthermia.展开更多
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.31671017 and 81872809)the startup funding support from The Cancer Hospital of the University of Chinese Academy of Sciences(CAS),Institute of Basic Medicine and Cancer(IBMC),CAS.HM thanks the start-up packages of NCNST,CAS.
文摘Compared to conventional hyperthermia that is limited by low selectivity and severe side effects,nano-enabled hyperthermia yields great potentials to tackle these limitations for cancer treatment.Another major advance is the observation of immunological responses associated with nano-enabled hyperthermia,which introduces a new avenue,allowing a potential paradigm shift from the acutely effective and cytotoxicity-centric response to the next-phase discovery,i.e.,long-lasting and/or systemic anti-tumor immunity.This perspective first discusses the temperature-gradient and the spatially-structured immunological landscape in solid tumors receiving nano-enabled hyperthermia.This includes the discussion about underlying mechanism such as immunogenic cell death,which initiates a profound immunological chain reaction.In order to propagate the immune activation as a viable therapeutic principle,we further discussed the tumor type-specific complexity in the immunological tumor microenvironment,including the creative design of nano-enabled combination therapy to synergize with nano-enabled hyperthermia.