This is a rotating charge loop model of an electron which explains the electron’s de Broglie base frequency to an accuracy of over 6 decimal places. The model also predicts the magnetic moment of the electron to over...This is a rotating charge loop model of an electron which explains the electron’s de Broglie base frequency to an accuracy of over 6 decimal places. The model also predicts the magnetic moment of the electron to over 6 decimal places and helps explain the transition from a purely electromagnetic photon to a fermion state of matter. The model also explains how charge and spin are conserved in the transition. Finally, this concept might be extended to explain the muon and tau higher energy states of the electron as well.展开更多
If a particle has a wave function or is in other ways a moving wave, it should have an axial Doppler shift. Writers on relativity do not give moving particles that. The classic equation of quantum mechanics requires t...If a particle has a wave function or is in other ways a moving wave, it should have an axial Doppler shift. Writers on relativity do not give moving particles that. The classic equation of quantum mechanics requires that frequency and mass have the same distortion from velocity (Doppler shift). But in the common writings on relativity mass always goes up with increases of velocity, and the transverse shift of frequency always goes down with increases of velocity [1] [2] [3] [4]. Most of this is due to simplifications and errors in the Lorentz transformation, some came from being in the aether wind era originally and because accelerators are noisy. It is not valid to say because the aether axial wind averages to zero between reflections so does axial Doppler shifts. After the first reflection in the Lorentz transformation, the light from the Sun is in Earth’s reference frame and there are no more Doppler shifts. Also the Michelson-Morley experiment is not all cases, and light is not the only thing deformed by velocity. The axial shift’s formula has the cosine of the observation angle in it. The implications are not just quantitative but also qualitative because anything with an axial Doppler shift has different values in different directions from an observer. That is the defining property of a vector and that changes its dimensions and the dimensions of the differential relations it is in. This happens with other scalar qualities as well. That means scalars such as mass and charge are now vectors and have additional dimensions. Therefore differential equations with them have additional dimensions. This includes Faraday-Max- well’s equations and Schrodinger’s equations. Also the Doppler blue shift seems to imply additional dimensions of time another way. That is the first Lorentz transformation error;the second is assumption of non-existent symmetry.展开更多
路易斯·德布罗意(Louis de Broglie,1892—1987)是20世纪伟大的理论物理学家之一.在本世纪20年代初,他独创了不朽的相波理论.这个理论在当时尚无任何实验支持的情况下大胆地断言一般物质具有波粒二象性,从而完成了波和粒子观念的...路易斯·德布罗意(Louis de Broglie,1892—1987)是20世纪伟大的理论物理学家之一.在本世纪20年代初,他独创了不朽的相波理论.这个理论在当时尚无任何实验支持的情况下大胆地断言一般物质具有波粒二象性,从而完成了波和粒子观念的一次伟大综合,并为波动力学的建立奠定了基础.本文从历史的角度出发,记述德布罗意的成长道路,侧重考察和分析他创立相波理论的光辉历程.展开更多
The author indicates that even a conclusive confirmation of neutrino oscillation does not necessarily imply the existence of massive neutrinos. The negative value of neutrino mass-square may be an alternative key with...The author indicates that even a conclusive confirmation of neutrino oscillation does not necessarily imply the existence of massive neutrinos. The negative value of neutrino mass-square may be an alternative key with realistic physical meaning. Reexamining special relativity (SR) we find that there actually exists a formal phase velocity of "de Brogue’s wave" in temporal Lorentz transformation attributed to the intrinsical essence of Minkowski’s space. The properties of spacelike interval between two events have already included constrains to describe superluminal motion and SR is compatible with the faster-than-light motion originally in algebraic domain. Pay attention to that the operator representation, has just verified for subluminal particles, not for superlurninal particles, adhering to de Brogue’s coexistence idea between waves and particles, it is possible to deduce a formal two-component Weyl equation to describe any species of free neutrinos with imaginary rest mass, which is equivalent to making use of the Dirac equation for a free spin-1/2 particle with zero rest mass in form.展开更多
In the previous paper (JMP 2014) we showed that there exists a NeoMinkowskian Gravitational Expanding Solution of GR (General Relativity) with CC (Cosmological Constant). We prove now that NeoMinkowskian Vacuum (non-b...In the previous paper (JMP 2014) we showed that there exists a NeoMinkowskian Gravitational Expanding Solution of GR (General Relativity) with CC (Cosmological Constant). We prove now that NeoMinkowskian Vacuum (non-baryonic Fluid), with gravitational (first) density (dark energy) and gravitational waves (at light speed), corresponds to the Gravitation Field of a Cosmological Black Hole (CBH). The latter predicts furthermore a basic emission of Radiation (CBR) from Hubble spherical singular Horizon to the inside of CBH (unlike Hawking’s emission) at an initial singular time. Our solution is then compatible with a well-tempered Big Bang and Expanding Universe (Escher’s Figure, see Penrose, 3) but incompatible with inflation. The latter is based on Hypothesis of a so-called Planck’s particle (Lemaitre’s primitive atom) characterized by a so-called Planck length. We prove that we can short-circuit this unstable particle with a stable cosmological Poincaré’s electron with gravific pressure. It is well known that electron is a stranger in usual Minkowskian vacuum (dixit Einstein). The stranger electron can be perfectly integrated in NeoMinkowskian Radiation fluid and then also (with its mass, charge and wavelength) in (second density of) CBR. Everything happens as if the leptonic mass of the electron were induced by our cosmological field. The unexpected cosmological model proposed here is the only one that predicts numerical values of (second) density and temperature of CBR very close to the observed (COBE) values.展开更多
The standard model of particle physics forms a consistent system for universe description. After following quantum mechanics, it derives particles from relativistic quantum fields. Since it does not include gravitatio...The standard model of particle physics forms a consistent system for universe description. After following quantum mechanics, it derives particles from relativistic quantum fields. Since it does not include gravitation, it describes only one aspect of the universe. In extension of general relativity, Einstein had proposed a symmetrical and complementary approach of physics. In his program, he privileged a relativist field based on representations for physical phenomena, before a precise mathematical description. It allows completing and unifying the universe description, like both eyes for relief vision, and both ears for stereophonic audition. We propose to show it with many simple examples.展开更多
A thought-experiment is described and the probability of a particular type of results is predicted according to the quantum formalism. Then, the assumption is made that there exists a particle that travels from the so...A thought-experiment is described and the probability of a particular type of results is predicted according to the quantum formalism. Then, the assumption is made that there exists a particle that travels from the source to one of the detectors, along a continuous trajectory. A contradiction appears: for agreeing with the quantum prediction, the particle has to land at once on two space-separated detectors. Therefore, the trajectory of the particle—if it exists—cannot be continuous.展开更多
The discovery of the Planck relation is generally regarded as the starting point of quantum physics.Planck's constant h is now regarded as one of the most important universal constants.The physical nature of h,howeve...The discovery of the Planck relation is generally regarded as the starting point of quantum physics.Planck's constant h is now regarded as one of the most important universal constants.The physical nature of h,however,has not been well understood.It was originally suggested as a fitting constant to explain the black-body radiation.Although Planck had proposed a theoretical justification of h,he was never satisfied with that.To solve this outstanding problem,we use the Maxwell theory to directly calculate the energy and momentum of a radiation wave packet.We find that the energy of the wave packet is indeed proportional to its oscillation frequency.This allows us to derive the value of Planck's constant.Furthermore,we show that the emission and transmission of a photon follows the all-or-none principle.The "strength" of the wave packet can be characterized by ζ,which represents the integrated strength of the vector potential along a transverse axis.We reason that ζ should have a fixed cut-off value for all photons.Our results suggest that a wave packet can behave like a particle.This offers a simple explanation to the recent satellite observations that the cosmic microwave background follows closely the black-body radiation as predicted by Planck's law.展开更多
When analyzing an Electron’s orbit’s and movements, a “classical” bare g-factor of “1” must be used, but when analyzing just the Electron itself, a bare g-factor and gyromagnetic ratio of twice the “classical”...When analyzing an Electron’s orbit’s and movements, a “classical” bare g-factor of “1” must be used, but when analyzing just the Electron itself, a bare g-factor and gyromagnetic ratio of twice the “classical” value is needed to fit reality. Nobody has fully explained this yet. By examining the electromagnetic wave nature of the electron, it is possible to show a simple reason why its bare g-factor must be 2, without resorting to superluminal velocities or dismissing it as mystically intrinsic. A simple charged electromagnetic wave loop (CEWL) model of the electron that maintains the same electromagnetic wave nature as the high-energy photons from which electron-positron pairs form, will have exactly half of its energy in the form of magnetic energy who’s field lines are perpendicular to the direction of the charge rotation, which leads to the conclusion that only half of the electron’s electromagnetic mass is rotational mass, from which it is easy to calculate a bare g-factor of 2 using Feynman’s equation for the electron’s g-factor.展开更多
In this paper we suggested a natural interpretation of the de Broglie-Bohm quantum potential, as the energy due to the oscillating electromagnetic field (virtual photon) coupled with moving charged particle. Generaliz...In this paper we suggested a natural interpretation of the de Broglie-Bohm quantum potential, as the energy due to the oscillating electromagnetic field (virtual photon) coupled with moving charged particle. Generalization of the Schrödinger equation is obtained. The wave function is shown to be the eigenfunction of the Sturm-Liouville problem in which we expand virtual photon to include it implicitly into consideration. It is shown that the non-locality of quantum mechanics is related only with virtual photon. As an example, the zero-energy of harmonic oscillator is obtained from classical equations.展开更多
文摘This is a rotating charge loop model of an electron which explains the electron’s de Broglie base frequency to an accuracy of over 6 decimal places. The model also predicts the magnetic moment of the electron to over 6 decimal places and helps explain the transition from a purely electromagnetic photon to a fermion state of matter. The model also explains how charge and spin are conserved in the transition. Finally, this concept might be extended to explain the muon and tau higher energy states of the electron as well.
文摘If a particle has a wave function or is in other ways a moving wave, it should have an axial Doppler shift. Writers on relativity do not give moving particles that. The classic equation of quantum mechanics requires that frequency and mass have the same distortion from velocity (Doppler shift). But in the common writings on relativity mass always goes up with increases of velocity, and the transverse shift of frequency always goes down with increases of velocity [1] [2] [3] [4]. Most of this is due to simplifications and errors in the Lorentz transformation, some came from being in the aether wind era originally and because accelerators are noisy. It is not valid to say because the aether axial wind averages to zero between reflections so does axial Doppler shifts. After the first reflection in the Lorentz transformation, the light from the Sun is in Earth’s reference frame and there are no more Doppler shifts. Also the Michelson-Morley experiment is not all cases, and light is not the only thing deformed by velocity. The axial shift’s formula has the cosine of the observation angle in it. The implications are not just quantitative but also qualitative because anything with an axial Doppler shift has different values in different directions from an observer. That is the defining property of a vector and that changes its dimensions and the dimensions of the differential relations it is in. This happens with other scalar qualities as well. That means scalars such as mass and charge are now vectors and have additional dimensions. Therefore differential equations with them have additional dimensions. This includes Faraday-Max- well’s equations and Schrodinger’s equations. Also the Doppler blue shift seems to imply additional dimensions of time another way. That is the first Lorentz transformation error;the second is assumption of non-existent symmetry.
文摘路易斯·德布罗意(Louis de Broglie,1892—1987)是20世纪伟大的理论物理学家之一.在本世纪20年代初,他独创了不朽的相波理论.这个理论在当时尚无任何实验支持的情况下大胆地断言一般物质具有波粒二象性,从而完成了波和粒子观念的一次伟大综合,并为波动力学的建立奠定了基础.本文从历史的角度出发,记述德布罗意的成长道路,侧重考察和分析他创立相波理论的光辉历程.
文摘The author indicates that even a conclusive confirmation of neutrino oscillation does not necessarily imply the existence of massive neutrinos. The negative value of neutrino mass-square may be an alternative key with realistic physical meaning. Reexamining special relativity (SR) we find that there actually exists a formal phase velocity of "de Brogue’s wave" in temporal Lorentz transformation attributed to the intrinsical essence of Minkowski’s space. The properties of spacelike interval between two events have already included constrains to describe superluminal motion and SR is compatible with the faster-than-light motion originally in algebraic domain. Pay attention to that the operator representation, has just verified for subluminal particles, not for superlurninal particles, adhering to de Brogue’s coexistence idea between waves and particles, it is possible to deduce a formal two-component Weyl equation to describe any species of free neutrinos with imaginary rest mass, which is equivalent to making use of the Dirac equation for a free spin-1/2 particle with zero rest mass in form.
文摘In the previous paper (JMP 2014) we showed that there exists a NeoMinkowskian Gravitational Expanding Solution of GR (General Relativity) with CC (Cosmological Constant). We prove now that NeoMinkowskian Vacuum (non-baryonic Fluid), with gravitational (first) density (dark energy) and gravitational waves (at light speed), corresponds to the Gravitation Field of a Cosmological Black Hole (CBH). The latter predicts furthermore a basic emission of Radiation (CBR) from Hubble spherical singular Horizon to the inside of CBH (unlike Hawking’s emission) at an initial singular time. Our solution is then compatible with a well-tempered Big Bang and Expanding Universe (Escher’s Figure, see Penrose, 3) but incompatible with inflation. The latter is based on Hypothesis of a so-called Planck’s particle (Lemaitre’s primitive atom) characterized by a so-called Planck length. We prove that we can short-circuit this unstable particle with a stable cosmological Poincaré’s electron with gravific pressure. It is well known that electron is a stranger in usual Minkowskian vacuum (dixit Einstein). The stranger electron can be perfectly integrated in NeoMinkowskian Radiation fluid and then also (with its mass, charge and wavelength) in (second density of) CBR. Everything happens as if the leptonic mass of the electron were induced by our cosmological field. The unexpected cosmological model proposed here is the only one that predicts numerical values of (second) density and temperature of CBR very close to the observed (COBE) values.
文摘The standard model of particle physics forms a consistent system for universe description. After following quantum mechanics, it derives particles from relativistic quantum fields. Since it does not include gravitation, it describes only one aspect of the universe. In extension of general relativity, Einstein had proposed a symmetrical and complementary approach of physics. In his program, he privileged a relativist field based on representations for physical phenomena, before a precise mathematical description. It allows completing and unifying the universe description, like both eyes for relief vision, and both ears for stereophonic audition. We propose to show it with many simple examples.
文摘A thought-experiment is described and the probability of a particular type of results is predicted according to the quantum formalism. Then, the assumption is made that there exists a particle that travels from the source to one of the detectors, along a continuous trajectory. A contradiction appears: for agreeing with the quantum prediction, the particle has to land at once on two space-separated detectors. Therefore, the trajectory of the particle—if it exists—cannot be continuous.
基金Project partially supported by the Research Grant Council of Hong Kong,China(Grant No.RGC 660207)the Macro-Science Program,Hong Kong University of Science and Technology,China(Grant No.DCC 00/01.SC01)
文摘The discovery of the Planck relation is generally regarded as the starting point of quantum physics.Planck's constant h is now regarded as one of the most important universal constants.The physical nature of h,however,has not been well understood.It was originally suggested as a fitting constant to explain the black-body radiation.Although Planck had proposed a theoretical justification of h,he was never satisfied with that.To solve this outstanding problem,we use the Maxwell theory to directly calculate the energy and momentum of a radiation wave packet.We find that the energy of the wave packet is indeed proportional to its oscillation frequency.This allows us to derive the value of Planck's constant.Furthermore,we show that the emission and transmission of a photon follows the all-or-none principle.The "strength" of the wave packet can be characterized by ζ,which represents the integrated strength of the vector potential along a transverse axis.We reason that ζ should have a fixed cut-off value for all photons.Our results suggest that a wave packet can behave like a particle.This offers a simple explanation to the recent satellite observations that the cosmic microwave background follows closely the black-body radiation as predicted by Planck's law.
文摘When analyzing an Electron’s orbit’s and movements, a “classical” bare g-factor of “1” must be used, but when analyzing just the Electron itself, a bare g-factor and gyromagnetic ratio of twice the “classical” value is needed to fit reality. Nobody has fully explained this yet. By examining the electromagnetic wave nature of the electron, it is possible to show a simple reason why its bare g-factor must be 2, without resorting to superluminal velocities or dismissing it as mystically intrinsic. A simple charged electromagnetic wave loop (CEWL) model of the electron that maintains the same electromagnetic wave nature as the high-energy photons from which electron-positron pairs form, will have exactly half of its energy in the form of magnetic energy who’s field lines are perpendicular to the direction of the charge rotation, which leads to the conclusion that only half of the electron’s electromagnetic mass is rotational mass, from which it is easy to calculate a bare g-factor of 2 using Feynman’s equation for the electron’s g-factor.
文摘In this paper we suggested a natural interpretation of the de Broglie-Bohm quantum potential, as the energy due to the oscillating electromagnetic field (virtual photon) coupled with moving charged particle. Generalization of the Schrödinger equation is obtained. The wave function is shown to be the eigenfunction of the Sturm-Liouville problem in which we expand virtual photon to include it implicitly into consideration. It is shown that the non-locality of quantum mechanics is related only with virtual photon. As an example, the zero-energy of harmonic oscillator is obtained from classical equations.