The objective of the present study was to determine the optimum sowing time of three quinoa ecotypes (Altipllano, sea level, and valley) for high seed yields in south Kanto, Japan. Pot experiments were conducted in th...The objective of the present study was to determine the optimum sowing time of three quinoa ecotypes (Altipllano, sea level, and valley) for high seed yields in south Kanto, Japan. Pot experiments were conducted in the experimental field at Nihon University during 2011, 2012, 2013, and 2014. In this experiment, the following quinoa varieties were used NL-6, Baer Cajon and Cauquenes (sea-level type), Amarilla de Marangani, Blanca de Junin, CICA-127, ECU-420, ECU-525, Ingapirica, and Narino (valley type), 94R and Isluga (Altiplano type). The quinoa seeds were sown on March 29, June 17 and September 22, 2011;March 27, June 17 and August 28, 2012;March 26, June 15 and 5 September 5, 2013;and March 27, June 17 and August 28, 2014. When the sea-level type and Altiplano type seeds were sowed from March to September, the seeds could be gained in all sowing plots. However, the seed weights of all varieties were the highest in the sowing plots of March. And the seed weights in the sowing plot of March were significantly higher than that in the other sowing plots. The sea-level type and Altiplano type quinoa had almost the same seed growth reaction for day length and day temperature. Thus, to gain a high seed yield of the sea-level and Altiplano type quinoa, March was the optimum sowing time in south Kanto, Japan. When the valley-type seeds were sowed from March to June, the seeds could not be gained, except in 2012. In 2012, the seed weights and seed numbers in sowing plots of March and June were significantly lower than those in the sowing plot of September. Thus, to obtain a high seed yield of the valley type quinoa, the optimum sowing time in south Kanto, Japan was from August to September.展开更多
The induction of biofilm formation has been explored as a means of harvesting microalgae for bioprocessing applications. Environmental stressors have been implicated in the induction of biofilm formation;however, it i...The induction of biofilm formation has been explored as a means of harvesting microalgae for bioprocessing applications. Environmental stressors have been implicated in the induction of biofilm formation;however, it is unclear whether all stressors, or a select few, are responsible. This study aimed to investigate the effects of three stressors, nitrogen depletion, reduced or elongated day lengths, and increased culture turbulence on bio-film formation of Parachlorella kessleri. We also examined corresponding effects on growth and production of reactive oxygen species. Turbulence induced the greatest response in which a significant decrease in growth plus an increase in superoxide production and flocculation efficiency were seen for the 300-rpm treatment. For varying day lengths, stress response was not observed, however, a significant increase in EPS secretion was measured in both shorter and longer days. Nitrogen depletion induced a low-level stress response, in which superoxide production increased for the highest concentrations, while growth was not impacted. In contrast to previous studies on nitrogen depletion, a significant increase in EPS secretion was not observed. Results indicate that stress response varies according to type and magnitude. EPS production and thus biofilm formation are not linked to the stress indicators investigated. P. kessleri uses small quantities of EPS to contribute to cell stickiness, but not necessarily to the full formation of a biofilm;however, cell stickiness served as a mechanism for substrate adherence and cellular aggregation none the less.展开更多
文摘The objective of the present study was to determine the optimum sowing time of three quinoa ecotypes (Altipllano, sea level, and valley) for high seed yields in south Kanto, Japan. Pot experiments were conducted in the experimental field at Nihon University during 2011, 2012, 2013, and 2014. In this experiment, the following quinoa varieties were used NL-6, Baer Cajon and Cauquenes (sea-level type), Amarilla de Marangani, Blanca de Junin, CICA-127, ECU-420, ECU-525, Ingapirica, and Narino (valley type), 94R and Isluga (Altiplano type). The quinoa seeds were sown on March 29, June 17 and September 22, 2011;March 27, June 17 and August 28, 2012;March 26, June 15 and 5 September 5, 2013;and March 27, June 17 and August 28, 2014. When the sea-level type and Altiplano type seeds were sowed from March to September, the seeds could be gained in all sowing plots. However, the seed weights of all varieties were the highest in the sowing plots of March. And the seed weights in the sowing plot of March were significantly higher than that in the other sowing plots. The sea-level type and Altiplano type quinoa had almost the same seed growth reaction for day length and day temperature. Thus, to gain a high seed yield of the sea-level and Altiplano type quinoa, March was the optimum sowing time in south Kanto, Japan. When the valley-type seeds were sowed from March to June, the seeds could not be gained, except in 2012. In 2012, the seed weights and seed numbers in sowing plots of March and June were significantly lower than those in the sowing plot of September. Thus, to obtain a high seed yield of the valley type quinoa, the optimum sowing time in south Kanto, Japan was from August to September.
文摘The induction of biofilm formation has been explored as a means of harvesting microalgae for bioprocessing applications. Environmental stressors have been implicated in the induction of biofilm formation;however, it is unclear whether all stressors, or a select few, are responsible. This study aimed to investigate the effects of three stressors, nitrogen depletion, reduced or elongated day lengths, and increased culture turbulence on bio-film formation of Parachlorella kessleri. We also examined corresponding effects on growth and production of reactive oxygen species. Turbulence induced the greatest response in which a significant decrease in growth plus an increase in superoxide production and flocculation efficiency were seen for the 300-rpm treatment. For varying day lengths, stress response was not observed, however, a significant increase in EPS secretion was measured in both shorter and longer days. Nitrogen depletion induced a low-level stress response, in which superoxide production increased for the highest concentrations, while growth was not impacted. In contrast to previous studies on nitrogen depletion, a significant increase in EPS secretion was not observed. Results indicate that stress response varies according to type and magnitude. EPS production and thus biofilm formation are not linked to the stress indicators investigated. P. kessleri uses small quantities of EPS to contribute to cell stickiness, but not necessarily to the full formation of a biofilm;however, cell stickiness served as a mechanism for substrate adherence and cellular aggregation none the less.