针对改进的局部稀疏系数(Enhanced Local Sparsity Coefficient,简称ELSC)算法在邻域查询过程中存在的不足,以及为了提高算法查准率,提出了一种基于方形邻域和裁剪因子的离群点检测算法.首先采用方形邻域,吸取网格算法的思想,以扩张的...针对改进的局部稀疏系数(Enhanced Local Sparsity Coefficient,简称ELSC)算法在邻域查询过程中存在的不足,以及为了提高算法查准率,提出了一种基于方形邻域和裁剪因子的离群点检测算法.首先采用方形邻域,吸取网格算法的思想,以扩张的方形邻域代替网格分割,快速地排除聚类点,避免了网格算法的"维灾"问题.其次为了提高算法的精确度,引入裁剪因子的概念对候选离群点集进行精选.最后通过新定义的局部稀疏指数确定离群点.试验测试表明,该算法的执行效率与检测精度均优于ELSC算法.展开更多
基金国家"九七三"重点基础研究发展规划项目基金(2006CB303005)国家自然科学基金(60903016+4 种基金6053311060773063)新世纪优秀人才支持计划(NCET-05-0333)黑龙江省教育厅科学技术研究项目(11531276)NSFC-RGC of China(60831160525)资助~~
文摘针对改进的局部稀疏系数(Enhanced Local Sparsity Coefficient,简称ELSC)算法在邻域查询过程中存在的不足,以及为了提高算法查准率,提出了一种基于方形邻域和裁剪因子的离群点检测算法.首先采用方形邻域,吸取网格算法的思想,以扩张的方形邻域代替网格分割,快速地排除聚类点,避免了网格算法的"维灾"问题.其次为了提高算法的精确度,引入裁剪因子的概念对候选离群点集进行精选.最后通过新定义的局部稀疏指数确定离群点.试验测试表明,该算法的执行效率与检测精度均优于ELSC算法.