new coordination polymer {[Zn(CF3COO)2(C5H5ON)]·H2O}n was synthesized based on the reaction of zinc(Ⅱ) trifluoroacetate and 3-hydroxypyridine(C5H5ON) in methanol medium for the first time. The structure of the c...new coordination polymer {[Zn(CF3COO)2(C5H5ON)]·H2O}n was synthesized based on the reaction of zinc(Ⅱ) trifluoroacetate and 3-hydroxypyridine(C5H5ON) in methanol medium for the first time. The structure of the coordination polymer was confirmed by IR, 1H NMR, elemental analysis and thermal analysis. The crystal structure of the coordination polymer was also determined by X-ray single crystal diffraction. The crystal belongs to monoclinic system with space group P21/m, and crystallographic data of the coordination polymer are: a= 0.863 1(4) nm, b=0.717 7(3) nm, c=1.116 4(5) nm, α=γ=90°, β=107.542(6)°, V=0.659 4(5) nm3; Dc=2.037 g·cm-3; Z=2; F(000)=400; μ=1.969 mm-1. Zinc(Ⅱ) atom lies at the center of an octahedron formed by the coordination of zinc atom and six O atoms which come from four different trifluoroacetate ions and two different 3-hydroxypyridine molecules where each trifluoroacetate ion and 3-hydroxypyridine are coordinated to two different zinc ions to form coordination polymer. CCDC: 253909.展开更多
The study involved the evaluation of the hydrocarbon potential of FORMAT Field, coastal swamp depobelt Niger delta, Nigeria to obtain a more efficient reservoir characterization and fluid properties identification. De...The study involved the evaluation of the hydrocarbon potential of FORMAT Field, coastal swamp depobelt Niger delta, Nigeria to obtain a more efficient reservoir characterization and fluid properties identification. Despite advances in seismic data interpretation using traditional 3D seismic data interpretation, obtaining adequate reservoir characteristics at the finest level had proved very challenging with often disappointing results. A method that integrates the amplitude variation with offfset (AVO) analysis is hereby proposed to better illuminate the reservoir. The Hampson Russell 10.3 was used to integrate and study the available seismic and well data. The reservoir of interest was delineated using the available suite of petrophysical data. This was marked by low gamma ray, high resistivity, and low acoustic impedance between a true subsea vertical depth (TVDss) range of 10,350 - 10,450 ft. The AVO fluid substitution yielded a decrease in the density values of pure gas (2.3 - 1.6 g/cc), pure oil (2.3 - 1.8 g/cc) while the Poisson pure brine increased (2.3 to 2.8 g/cc). Result from FORMAT 26 plots yielded a negative intercept and negative gradient at the top and a positive intercept and positive gradient at the Base which conforms to Class III AVO anomaly. FORMAT 30 plots yielded a negative intercept and positive gradient at the top and a positive intercept and negative gradient at the Base which conforms to class IV AVO anomaly. AVO attribute volume slices decreased in the Poisson ratio (0.96 to - 1.0) indicating that the reservoir contains hydrocarbon. The s-wave reflectivity and the product of the intercept and gradient further clarified that there was a Class 3 gas sand in the reservoir and the possibility of a Class 4 gas sand anomaly in that same reservoir.展开更多
This study examines the turbidite dynamics and hydrocarbon reservoir formation in Ghana’s Tano Basin, which is located in coastal West Africa. Through an exploration of geological processes spanning millions of years...This study examines the turbidite dynamics and hydrocarbon reservoir formation in Ghana’s Tano Basin, which is located in coastal West Africa. Through an exploration of geological processes spanning millions of years, we uncover key factors shaping hydrocarbon accumulation, including source rock richness, temperature, pressure, and geological structures. The research offers valuable insights applicable to exploration, management, and sustainable resource exploitation in coastal West Africa. It facilitates the identification of exploration targets with higher hydrocarbon potential, enables the anticipation of reservoir potential within the Tano Basin, and assists in tailoring exploration and management strategies to specific geological conditions of the Tano Basin. Analysis of fluvial channels sheds light on their impact on landscape formation and hydrocarbon exploration. The investigation into turbidite systems unveils intricate interactions involving tectonics, sea-level fluctuations, and sedimentation patterns, influencing the development of reservoirs. An understanding of sediment transport and depositional settings is essential for efficient reservoir management. Geomorphological features, such as channels, submarine canyons, and distinct channel types, are essential in this situation. A detailed examination of turbidite channel structures, encompassing canyons, channel complexes, convex channels, and U-shaped channels, provides valuable insights and aids in identifying exploration targets like basal lag, channel levees, and lobes. These findings underscore the enduring significance of turbidite systems as conduits for sediment transport, contributing to enhanced reservoir management and efficient hydrocarbon production. The study also highlights how important it is to examine the configuration of sedimentary layers, stacking patterns, and angular laminated facies to identify turbidites, understand reservoir distribution, and improve well design. The dynamic nature of turbidite systems, influenced by basin 展开更多
This study presents a comparative analysis of two image enhancement techniques, Continuous Wavelet Transform (CWT) and Fast Fourier Transform (FFT), in the context of improving the clarity of high-quality 3D seismic d...This study presents a comparative analysis of two image enhancement techniques, Continuous Wavelet Transform (CWT) and Fast Fourier Transform (FFT), in the context of improving the clarity of high-quality 3D seismic data obtained from the Tano Basin in West Africa, Ghana. The research focuses on a comparative analysis of image clarity in seismic attribute analysis to facilitate the identification of reservoir features within the subsurface structures. The findings of the study indicate that CWT has a significant advantage over FFT in terms of image quality and identifying subsurface structures. The results demonstrate the superior performance of CWT in providing a better representation, making it more effective for seismic attribute analysis. The study highlights the importance of choosing the appropriate image enhancement technique based on the specific application needs and the broader context of the study. While CWT provides high-quality images and superior performance in identifying subsurface structures, the selection between these methods should be made judiciously, taking into account the objectives of the study and the characteristics of the signals being analyzed. The research provides valuable insights into the decision-making process for selecting image enhancement techniques in seismic data analysis, helping researchers and practitioners make informed choices that cater to the unique requirements of their studies. Ultimately, this study contributes to the advancement of the field of subsurface imaging and geological feature identification.展开更多
The Pennsylvanian unconformity,which is a detrital surface,separates the beds of the Permian-aged strata from the Lower Paleozoic in the Central Basin Platform.Seismic data interpretation indicates that the unconformi...The Pennsylvanian unconformity,which is a detrital surface,separates the beds of the Permian-aged strata from the Lower Paleozoic in the Central Basin Platform.Seismic data interpretation indicates that the unconformity is an angular unconformity,overlying multiple normal faults,and accompanied with a thrust fault which maximizes the region's structural complexity.Additionally,the Pennsylvanian angular unconformity creates pinch-outs between the beds above and below.We computed the spectral decomposition and reflector convergence attributes and analyzed them to characterize the angular unconformity and faults.The spectral decomposition attribute divides the broadband seismic data into different spectral bands to resolve thin beds and show thickness variations.In contrast,the reflector convergence attribute highlights the location and direction of the pinch-outs as they dip south at angles between 2° and 6°.After reviewing findings from RGB blending of the spectrally decomposed frequencies along the Pennsylvanian unconformity,we observed channel-like features and multiple linear bands in addition to the faults and pinch-outs.It can be inferred that the identified linear bands could be the result of different lithologies associated with the tilting of the beds,and the faults may possibly influence hydrocarbon migration or act as a flow barrier to entrap hydrocarbon accumulation.The identification of this angular unconformity and the associated features in the study area are vital for the following reasons:1)the unconformity surface represents a natural stratigraphic boundary;2)the stratigraphic pinch-outs act as fluid flow connectivity boundaries;3)the areal extent of compartmentalized reservoirs'boundaries created by the angular unconformity are better defined;and 4)fault displacements are better understood when planning well locations as faults can be flow barriers,or permeability conduits,depending on facies heterogeneity and/or seal effectiveness of a fault,which can affect hydrocarbon production.The methodol展开更多
Several 2,5-dimethyl-N-substituted pyrroles were prepared by the condensation of different substituted anilines with 2,5- hexanedione using nano lead oxide as an efficient and recyclable catalyst.All the synthesized c...Several 2,5-dimethyl-N-substituted pyrroles were prepared by the condensation of different substituted anilines with 2,5- hexanedione using nano lead oxide as an efficient and recyclable catalyst.All the synthesized compounds are confirmed through IR, ~1H NMR,^(13)C NMR and mass spectral data.Nano lead oxide β-PbO(P85) was prepared by dissolving lead acetate dihydrate in 1- propanol at a pH 9.0 under stirring at 85℃.The structural study and surface morphology of the lead oxide(PbO) were characterized using X-ray diffraction(XRD),Scanning electron microscopy(SEM) and the functional groups of the PbO sample were investigated using infrared spectrophotometer.展开更多
文摘new coordination polymer {[Zn(CF3COO)2(C5H5ON)]·H2O}n was synthesized based on the reaction of zinc(Ⅱ) trifluoroacetate and 3-hydroxypyridine(C5H5ON) in methanol medium for the first time. The structure of the coordination polymer was confirmed by IR, 1H NMR, elemental analysis and thermal analysis. The crystal structure of the coordination polymer was also determined by X-ray single crystal diffraction. The crystal belongs to monoclinic system with space group P21/m, and crystallographic data of the coordination polymer are: a= 0.863 1(4) nm, b=0.717 7(3) nm, c=1.116 4(5) nm, α=γ=90°, β=107.542(6)°, V=0.659 4(5) nm3; Dc=2.037 g·cm-3; Z=2; F(000)=400; μ=1.969 mm-1. Zinc(Ⅱ) atom lies at the center of an octahedron formed by the coordination of zinc atom and six O atoms which come from four different trifluoroacetate ions and two different 3-hydroxypyridine molecules where each trifluoroacetate ion and 3-hydroxypyridine are coordinated to two different zinc ions to form coordination polymer. CCDC: 253909.
文摘The study involved the evaluation of the hydrocarbon potential of FORMAT Field, coastal swamp depobelt Niger delta, Nigeria to obtain a more efficient reservoir characterization and fluid properties identification. Despite advances in seismic data interpretation using traditional 3D seismic data interpretation, obtaining adequate reservoir characteristics at the finest level had proved very challenging with often disappointing results. A method that integrates the amplitude variation with offfset (AVO) analysis is hereby proposed to better illuminate the reservoir. The Hampson Russell 10.3 was used to integrate and study the available seismic and well data. The reservoir of interest was delineated using the available suite of petrophysical data. This was marked by low gamma ray, high resistivity, and low acoustic impedance between a true subsea vertical depth (TVDss) range of 10,350 - 10,450 ft. The AVO fluid substitution yielded a decrease in the density values of pure gas (2.3 - 1.6 g/cc), pure oil (2.3 - 1.8 g/cc) while the Poisson pure brine increased (2.3 to 2.8 g/cc). Result from FORMAT 26 plots yielded a negative intercept and negative gradient at the top and a positive intercept and positive gradient at the Base which conforms to Class III AVO anomaly. FORMAT 30 plots yielded a negative intercept and positive gradient at the top and a positive intercept and negative gradient at the Base which conforms to class IV AVO anomaly. AVO attribute volume slices decreased in the Poisson ratio (0.96 to - 1.0) indicating that the reservoir contains hydrocarbon. The s-wave reflectivity and the product of the intercept and gradient further clarified that there was a Class 3 gas sand in the reservoir and the possibility of a Class 4 gas sand anomaly in that same reservoir.
文摘This study examines the turbidite dynamics and hydrocarbon reservoir formation in Ghana’s Tano Basin, which is located in coastal West Africa. Through an exploration of geological processes spanning millions of years, we uncover key factors shaping hydrocarbon accumulation, including source rock richness, temperature, pressure, and geological structures. The research offers valuable insights applicable to exploration, management, and sustainable resource exploitation in coastal West Africa. It facilitates the identification of exploration targets with higher hydrocarbon potential, enables the anticipation of reservoir potential within the Tano Basin, and assists in tailoring exploration and management strategies to specific geological conditions of the Tano Basin. Analysis of fluvial channels sheds light on their impact on landscape formation and hydrocarbon exploration. The investigation into turbidite systems unveils intricate interactions involving tectonics, sea-level fluctuations, and sedimentation patterns, influencing the development of reservoirs. An understanding of sediment transport and depositional settings is essential for efficient reservoir management. Geomorphological features, such as channels, submarine canyons, and distinct channel types, are essential in this situation. A detailed examination of turbidite channel structures, encompassing canyons, channel complexes, convex channels, and U-shaped channels, provides valuable insights and aids in identifying exploration targets like basal lag, channel levees, and lobes. These findings underscore the enduring significance of turbidite systems as conduits for sediment transport, contributing to enhanced reservoir management and efficient hydrocarbon production. The study also highlights how important it is to examine the configuration of sedimentary layers, stacking patterns, and angular laminated facies to identify turbidites, understand reservoir distribution, and improve well design. The dynamic nature of turbidite systems, influenced by basin
文摘This study presents a comparative analysis of two image enhancement techniques, Continuous Wavelet Transform (CWT) and Fast Fourier Transform (FFT), in the context of improving the clarity of high-quality 3D seismic data obtained from the Tano Basin in West Africa, Ghana. The research focuses on a comparative analysis of image clarity in seismic attribute analysis to facilitate the identification of reservoir features within the subsurface structures. The findings of the study indicate that CWT has a significant advantage over FFT in terms of image quality and identifying subsurface structures. The results demonstrate the superior performance of CWT in providing a better representation, making it more effective for seismic attribute analysis. The study highlights the importance of choosing the appropriate image enhancement technique based on the specific application needs and the broader context of the study. While CWT provides high-quality images and superior performance in identifying subsurface structures, the selection between these methods should be made judiciously, taking into account the objectives of the study and the characteristics of the signals being analyzed. The research provides valuable insights into the decision-making process for selecting image enhancement techniques in seismic data analysis, helping researchers and practitioners make informed choices that cater to the unique requirements of their studies. Ultimately, this study contributes to the advancement of the field of subsurface imaging and geological feature identification.
文摘The Pennsylvanian unconformity,which is a detrital surface,separates the beds of the Permian-aged strata from the Lower Paleozoic in the Central Basin Platform.Seismic data interpretation indicates that the unconformity is an angular unconformity,overlying multiple normal faults,and accompanied with a thrust fault which maximizes the region's structural complexity.Additionally,the Pennsylvanian angular unconformity creates pinch-outs between the beds above and below.We computed the spectral decomposition and reflector convergence attributes and analyzed them to characterize the angular unconformity and faults.The spectral decomposition attribute divides the broadband seismic data into different spectral bands to resolve thin beds and show thickness variations.In contrast,the reflector convergence attribute highlights the location and direction of the pinch-outs as they dip south at angles between 2° and 6°.After reviewing findings from RGB blending of the spectrally decomposed frequencies along the Pennsylvanian unconformity,we observed channel-like features and multiple linear bands in addition to the faults and pinch-outs.It can be inferred that the identified linear bands could be the result of different lithologies associated with the tilting of the beds,and the faults may possibly influence hydrocarbon migration or act as a flow barrier to entrap hydrocarbon accumulation.The identification of this angular unconformity and the associated features in the study area are vital for the following reasons:1)the unconformity surface represents a natural stratigraphic boundary;2)the stratigraphic pinch-outs act as fluid flow connectivity boundaries;3)the areal extent of compartmentalized reservoirs'boundaries created by the angular unconformity are better defined;and 4)fault displacements are better understood when planning well locations as faults can be flow barriers,or permeability conduits,depending on facies heterogeneity and/or seal effectiveness of a fault,which can affect hydrocarbon production.The methodol
文摘Several 2,5-dimethyl-N-substituted pyrroles were prepared by the condensation of different substituted anilines with 2,5- hexanedione using nano lead oxide as an efficient and recyclable catalyst.All the synthesized compounds are confirmed through IR, ~1H NMR,^(13)C NMR and mass spectral data.Nano lead oxide β-PbO(P85) was prepared by dissolving lead acetate dihydrate in 1- propanol at a pH 9.0 under stirring at 85℃.The structural study and surface morphology of the lead oxide(PbO) were characterized using X-ray diffraction(XRD),Scanning electron microscopy(SEM) and the functional groups of the PbO sample were investigated using infrared spectrophotometer.