随着深度学习的快速发展,计算机视觉领域对图像的分类研究不仅仅局限于识别出物体的类别,更需要在传统图像分类任务的基础上进行更细致的类别划分。通过对现有细粒度图像分类算法和模型的分析研究,提出一种基于Xception模型与WSDAN(weak...随着深度学习的快速发展,计算机视觉领域对图像的分类研究不仅仅局限于识别出物体的类别,更需要在传统图像分类任务的基础上进行更细致的类别划分。通过对现有细粒度图像分类算法和模型的分析研究,提出一种基于Xception模型与WSDAN(weakly supervised data augmentation network)弱监督数据增强的方法相结合的深度学习网络应用于细粒度图像分类任务。该方法以Xception网络作为骨干网络和特征提取网络、利用改进的WSDAN模型进行数据增强,并把增强后的图像反馈回网络作为输入图像来增强网络的泛化能力。在常用的细粒度图像数据集和NABirds数据集上进行实验验证,得到的分类正确率分别为89.28%、91.18%、94.47%、93.04%和88.4%。实验结果表明,与WSDAN(Pytorch)模型及其他多个主流细粒度分类算法相比,该方法取得了更好的分类结果。展开更多
为保障铁路运营安全,防范行人、家畜、野生动物等侵入铁路线路,提出基于深度学习的铁路异物侵入界限(简称:侵限)检测模型。针对铁路异物侵限的图像数据(简称:数据)集缺乏且难以采集的现实情况,通过多种途径自建铁路场景专用的异物侵限...为保障铁路运营安全,防范行人、家畜、野生动物等侵入铁路线路,提出基于深度学习的铁路异物侵入界限(简称:侵限)检测模型。针对铁路异物侵限的图像数据(简称:数据)集缺乏且难以采集的现实情况,通过多种途径自建铁路场景专用的异物侵限数据集,并引入多种数据增强技术,对数据集进行扩增,既增强了样本的多样性、又能有效避免训练阶段过拟合现象的发生;针对铁路场景的特殊性,对YOLO(You Only Look Once)v5深度学习模型结构进行一些适应性改进,将其作为铁路异物侵限检测模型,在自制数据集样本上进行训练和测试。测试结果表明,该模型的检测准确率达到88%以上,能够用于铁路现场对异物侵限的检测。展开更多
通过分析心音信号对心脏早期的病理状态进行确诊具有重要的意义。提出了一种基于深度卷积神经网络的心音分类方法。将心音信号转化成具有时频特性的梅尔频谱系数(Mel Frequency Spectral Coefficient,MFSC)特征图,将其作为深度卷积神经...通过分析心音信号对心脏早期的病理状态进行确诊具有重要的意义。提出了一种基于深度卷积神经网络的心音分类方法。将心音信号转化成具有时频特性的梅尔频谱系数(Mel Frequency Spectral Coefficient,MFSC)特征图,将其作为深度卷积神经网络模型的输入;利用深度卷积神经网络对MFSC特征图进行训练,引入中心损失函数建立最优的深度学习模型;测试阶段,先将心音信号转换成多张二维MFSC特征图,然后利用训练好的深度学习模型对其分类,最后利用多数表决原则判断心音信号的类别。针对人工标注的训练样本有限,导致模型训练正确率不高的问题,以心音的二维MFSC特征图为对象分别从时间域和频率域进行随机屏蔽处理进而扩充训练样本。实验结果表明,该方法在PASCAL心音数据集上进行测试,对正常、杂音、早搏三种心音的分类性能明显优于现有最好的方法。展开更多
文摘随着深度学习的快速发展,计算机视觉领域对图像的分类研究不仅仅局限于识别出物体的类别,更需要在传统图像分类任务的基础上进行更细致的类别划分。通过对现有细粒度图像分类算法和模型的分析研究,提出一种基于Xception模型与WSDAN(weakly supervised data augmentation network)弱监督数据增强的方法相结合的深度学习网络应用于细粒度图像分类任务。该方法以Xception网络作为骨干网络和特征提取网络、利用改进的WSDAN模型进行数据增强,并把增强后的图像反馈回网络作为输入图像来增强网络的泛化能力。在常用的细粒度图像数据集和NABirds数据集上进行实验验证,得到的分类正确率分别为89.28%、91.18%、94.47%、93.04%和88.4%。实验结果表明,与WSDAN(Pytorch)模型及其他多个主流细粒度分类算法相比,该方法取得了更好的分类结果。
文摘为保障铁路运营安全,防范行人、家畜、野生动物等侵入铁路线路,提出基于深度学习的铁路异物侵入界限(简称:侵限)检测模型。针对铁路异物侵限的图像数据(简称:数据)集缺乏且难以采集的现实情况,通过多种途径自建铁路场景专用的异物侵限数据集,并引入多种数据增强技术,对数据集进行扩增,既增强了样本的多样性、又能有效避免训练阶段过拟合现象的发生;针对铁路场景的特殊性,对YOLO(You Only Look Once)v5深度学习模型结构进行一些适应性改进,将其作为铁路异物侵限检测模型,在自制数据集样本上进行训练和测试。测试结果表明,该模型的检测准确率达到88%以上,能够用于铁路现场对异物侵限的检测。
文摘通过分析心音信号对心脏早期的病理状态进行确诊具有重要的意义。提出了一种基于深度卷积神经网络的心音分类方法。将心音信号转化成具有时频特性的梅尔频谱系数(Mel Frequency Spectral Coefficient,MFSC)特征图,将其作为深度卷积神经网络模型的输入;利用深度卷积神经网络对MFSC特征图进行训练,引入中心损失函数建立最优的深度学习模型;测试阶段,先将心音信号转换成多张二维MFSC特征图,然后利用训练好的深度学习模型对其分类,最后利用多数表决原则判断心音信号的类别。针对人工标注的训练样本有限,导致模型训练正确率不高的问题,以心音的二维MFSC特征图为对象分别从时间域和频率域进行随机屏蔽处理进而扩充训练样本。实验结果表明,该方法在PASCAL心音数据集上进行测试,对正常、杂音、早搏三种心音的分类性能明显优于现有最好的方法。