期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
A Novelty Solution to the Neutron Anomaly (An Anomalous Neutron or “Dark”?)
1
作者 Giovanni Guido Abele Bianchi 《Journal of High Energy Physics, Gravitation and Cosmology》 CAS 2023年第1期353-378,共26页
To explain the anomaly (τ<sub>b</sub> ≠ τ<sub>f</sub>) of the neutron lifetime τ in some experiments, in “bottle” τ<sub>b</sub> and in “beam” τ<sub>f</sub>, we... To explain the anomaly (τ<sub>b</sub> ≠ τ<sub>f</sub>) of the neutron lifetime τ in some experiments, in “bottle” τ<sub>b</sub> and in “beam” τ<sub>f</sub>, we resort to an anomalous form of the neutron n<sub>a</sub>. This form belongs to one of two different states of the structure of the quark configurations making up the neutron (nucleon): first, an ordinary form Ψ<sub>o</sub>, while the second is an “anomalous” form Ψ<sub>a</sub>, difficult to detect and decay. If the ordinary configuration is present in everyone nuclear processes, to strong and weak interactions, and in diffusion processes, the anomalous form can emerge, in casual way and probabilistic, in some processes of fusion with production of neutrons and can be highlighted in some experiments as those in “bottle” and in “beam”, see the anomaly of the neutron lifetime. We show that the anomalous form Ψ<sub>a</sub> can be highlighted in the coupling between a dipoles’ lattice of virtual bosons W and the neutron (nucleon) because the neutron into anomalous configuration does not decays. Finally, we interpret the anomalous neutron as a “dark” neutron, presenting, so, the dark matter as an anomalous form of hadron matter. 展开更多
关键词 ANOMALY Anomalous neutron dark neutron Geometric Structure Discrepancy Bosons’ Lattice Weak Decay
下载PDF
From the Dark Neutron to the Neutron Decay Anomaly and Lithium Cosmologic Problem 被引量:1
2
作者 Abele Bianchi Giovanni Guido 《Journal of High Energy Physics, Gravitation and Cosmology》 CAS 2022年第3期494-516,共23页
In the context of the geometric model of particles (PGM), we show two different forms of the structure of the quark positions making up the neutron: first, an ordinary form, while the second is a “dark” form (diffic... In the context of the geometric model of particles (PGM), we show two different forms of the structure of the quark positions making up the neutron: first, an ordinary form, while the second is a “dark” form (difficult to detect). By the “dark” form we attempt of explaining the anomaly of the neutron lifetime (τ) in its decay observed in two different experiments as that in “bottle” and “in beam” and expressed by discrepancy between the two lifetimes (τ<sub>bottle</sub> ≠ τ<sub>beam</sub>). Using the structure equation of the dark neutron, we calculate its mass. In this framework, two problems can be resolved: the asymmetry between matter and antimatter and the abundance into universe of Lithium <sup>7</sup>Li than the <sup>6</sup>Li. 展开更多
关键词 ANOMALY dark neutron Structure Equation Geometric Structure Golden Number Massive Coupling INTERPENETRATION LITHIUM
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部