In this short survey, we give a complete list of the most important results obtained by El Naschie’s E-infinity Cantorian space-time theory in the realm of quantum physics and cosmology. Special attention is paid to ...In this short survey, we give a complete list of the most important results obtained by El Naschie’s E-infinity Cantorian space-time theory in the realm of quantum physics and cosmology. Special attention is paid to his recent result on dark energy and revising Einstein’s famous formula .展开更多
The paper concludes that the energy given by Einstein’s famous formula E = mc2 consists of two parts. The first part is the positive energy of the quantum particle modeled by the topology of the zero set. The second ...The paper concludes that the energy given by Einstein’s famous formula E = mc2 consists of two parts. The first part is the positive energy of the quantum particle modeled by the topology of the zero set. The second part is the absolute value of the negative energy of the quantum Schr?dinger wave modeled by the topology of the empty set. We reason that the latter is nothing else but the so called missing dark energy of the universe which accounts for 94.45% of the total energy, in full agreement with the WMAP and Supernova cosmic measurement which was awarded the 2011 Nobel Prize in Physics. The dark energy of the quantum wave cannot be detected in the normal way because measurement collapses the quantum wave.展开更多
BACKGROUND:This study aimed to observe the effect of early goal directed therapy(EGDT)on tissue perfusion,microcirculation and tissue oxygenation in patients with septic shock.METHODS:Patients with early septic shock(...BACKGROUND:This study aimed to observe the effect of early goal directed therapy(EGDT)on tissue perfusion,microcirculation and tissue oxygenation in patients with septic shock.METHODS:Patients with early septic shock(<24 hours) who had been admitted to the ICU of Zhongda Hospital Affiliated to Southeast University from September 2009 through May 2011 were enrolled(research time:12 months),and they didn't meet the criteria of EGDT.Patients who had one of the following were excluded:stroke,brain injury,other types of shock,severe heart failure,acute myocardial infarction,age below 18 years,pregnancy,end-stage disease,cardiac arrest,extensive burns,oral bleeding,difficulty in opening the mouth,and the onset of septic shock beyond 24 hours.Patients treated with the standard protocol of EGDT were included.Transcutaneous pressure of oxygen and carbon dioxide(PtcO_2,PtcCO_2) were monitored and hemodynamic measurements were obtained.Side-stream dark field(SDF) imaging device was applied to obtain sublingual microcirculation.Hemodynamics,tissue oxygen,and sublingual microcirculation were compared before and after EGDT.If the variable meets the normal distribution,Student's t test was applied.Otherwise,Wilcoxon's rank-sum test was used.Correlation between variables was analyzed with Pearson's product-moment correlation coefficient method.RESULTS:Twenty patients were involved,but one patient wasn't analyzed because he didn't meet the EGDT criteria.PtcO_2 and PtcCO_2 were monitored in 19 patients,of whom sublingual microcirculation was obtained.After EGDT,PtcO_2 increased from 62.7+24.0 mmHg to 78.0±30.9mmHg(P<0.05) and tissue oxygenation index(PtcO_2/FiO_2) was 110.7+60.4 mmHg before EGDT and 141.6±78.2 mmHg after EGDT(P<0.05).The difference between PtcCO_2 and PCO_2 decreased significantly after EGDT(P<0.05).The density of perfused small vessels(PPV) and microcirculatory flow index of small vessels(MFI) tended to increase,but there were no significant differences between them(P>0.05).PtcO_2,PtcO_2/FiO_2,and PtcCO_2 were 展开更多
The static closed chamber technique is used in the study on the CH4 and N2O fluxes from the soils of primeval Abies fabri forest, the succession Abies fabri forest and the clear-cut areas of mid-aged Abies fabri fores...The static closed chamber technique is used in the study on the CH4 and N2O fluxes from the soils of primeval Abies fabri forest, the succession Abies fabri forest and the clear-cut areas of mid-aged Abies fabri forest in the Gongga Mountain from May 1998 to September 1999. The results indicate the following: (i) The forest soil serves as the source of atmospheric N2O at the three measurement sites, while the fluxes of CH4 are all negative, and soil is the sink of atmospheric CH4. The comparative relations of N2O emissions between the three sites are expressed as primeval Abies fabri forest > clear-cut areas > succession Abies fabri forest, and those of CH4 consumption fluxes are primeval Abies fabri forest > succession Abies fabri forest > clear-cut areas. (ii) Signifi-cant seasonal variations of N2O emission at various sites were observed, and two emission peaks of N2O occurr during summer (July—August) and spring (February—March), whereas N2O emission is relatively low in winter and spring (mid March—April). Seasonal variations of CH4 consumption at each measurement site fluctuate drastically with unclear regularities. Generally, CH4 consumption fluxes of succession Abies fabri forest and clear-cut areas are higher from mid May to late July but lower in the rest of sampling time, while the CH4 flux keeps a relatively high value even up to Sep-tember in primeval Abies fabri forest. In contrast to primeval Abies fabri forest, the CH4 absorbabili-ties of succession Abies fabri forest and clear-cut areas of mid-aged Abies fabri forest are weaker. Particularly, the absorbability of the clear-cut areas is even weaker as compared with the other two sites, for the deforestation reduces the soil absorbability of atmospheric CH4. (iii) Evident diurnal variation regularity exists in the N2O emissions of primeval Abies fabri forest, and there is a statistic positive correlation between the fluxes of N2O and air temperature (R=0.95, n=11, <0.01), and also the soil temperature of 5-cm layer (R=0.81, n=11, < 0.01), whe展开更多
Interactions between an isolate of dark septate endophytes (DSE) and roots of Dendrobium nobile Lindl. seedlings are reported in this paper. The isolate was obtained from orchid mycorrhizas on Dendrobium sp. in subt...Interactions between an isolate of dark septate endophytes (DSE) and roots of Dendrobium nobile Lindl. seedlings are reported in this paper. The isolate was obtained from orchid mycorrhizas on Dendrobium sp. in subtropical forest. The fungus formed typical orchid mycorrhiza in aseptic co-culture with D. nobile seedlings on modified Murashige-Skoog (MMS) medium. Anatomic observations of the infected roots showed that the DSE hyphae invaded the velamen layer, passed through passage cells in exodermis, entered the cortex cells, and then formed fungal pelotons of orchid mycorrhiza. D. nobile seedlings' plant height, stem diameter, new roots number and biomass were greatly enhanced by inoculating the fungus to seedlings. The fungus was identified as Leptodontidium by sequencing the polymerase chain reaction-amplified rDNA ITS1-5,8S-ITS2 (internal transcribed spacer (ITS)) regions and comparison with similar taxa.展开更多
This paper provides an overview of the Hypersphere World-Universe Model (WUM). WUM unifies and simplifies existing cosmological models and results into a single coherent picture, and proceeds to discuss the origin, ev...This paper provides an overview of the Hypersphere World-Universe Model (WUM). WUM unifies and simplifies existing cosmological models and results into a single coherent picture, and proceeds to discuss the origin, evolution, structure, ultimate fate, and primary parameters of the World. WUM explains the experimental data accumulated in the field of Cosmology and Astroparticle Physics over the last decades: the age of the world and critical energy density;the gravitational parameter and Hubble’s parameter;temperatures of the cosmic microwave background radiation and the peak of the far-infrared background radiation;gamma-ray background and cosmic neutrino background;macrostructure of the world and macroobjects structure. Additionally, the model makes predictions pertaining to masses of dark matter particles, photons, and neutrinos, proposes new types of particle interactions (Super Weak and Extremely Weak), and shows inter-connectivity of primary cosmological parameters of the world and the rise of the solar luminosity during the last 4.6 Byr. The model proposes to introduce a new fundamental parameter Q in the CODATA internationally recommended values.展开更多
The Dark Matter Particle Explorer(DAMPE) mission is one of the five scientific space science missions within the framework of the Strategic Pioneer Program on Space Science of the Chinese Academy of Science(CAS) appro...The Dark Matter Particle Explorer(DAMPE) mission is one of the five scientific space science missions within the framework of the Strategic Pioneer Program on Space Science of the Chinese Academy of Science(CAS) approved in 2011. The main scientific objective of DAMPE is to detect electrons and photons in the range of 5 GeV–10 TeV with unprecedented energy resolution(1.5% at 100 GeV) in order to identify possible Dark Matter(DM) signatures. It will also measure the flux of nuclei up to above 500 TeV with excellent energy resolution(40% at 800 GeV), which will bring new insights to the origin and propagation high energy cosmic rays. With its excellent photon detection capability, the DAMPE mission is well placed for new discoveries in high energy-ray astronomy as well.展开更多
Starting from Witten’s eleven dimensional M-theory, the present work develops in an analogous way a corresponding dimensional fractal version where . Subsequently, the new fractal formalism is utilized to determine t...Starting from Witten’s eleven dimensional M-theory, the present work develops in an analogous way a corresponding dimensional fractal version where . Subsequently, the new fractal formalism is utilized to determine the measured ordinary energy density of the cosmos which turns out to be intimately linked to the new theory’s fractal dimension via non-integer irrational Lorentzian-like factor: where is Hardy’s probability of quantum entanglement. Consequently, the energy density is found from a limiting classical kinetic energy to be Here, is ‘tHooft’s renormalon of dimensional regularization. The immediate logical, mathematical and physical implication of this result is that the dark energy density of the cosmos must be in astounding agreement with cosmic measurements and observations.展开更多
Previous work by Sigalotti in 2006 and recently by Hendi and Sharifzadeh in 2012 showed that all the fundamental equations of special relativity may be derived from a golden mean proportioned classical-Euclidean trian...Previous work by Sigalotti in 2006 and recently by Hendi and Sharifzadeh in 2012 showed that all the fundamental equations of special relativity may be derived from a golden mean proportioned classical-Euclidean triangle and confirmed Einstein’s famous equation E=mc2. In the present work it is shown that exchanging the Euclidean triangle with a hyperbolic one an extended quantum relativity energy equation, namely , is obtained. The relevance of this result in understanding the true nature of the “missing” so-called dark energy of the cosmos is discussed in the light of the fact that the ratio of to E=mc2 is which agrees almost completely with the latest supernova and WMAP cosmological measurements. To put it succinctly what is really missing is a quantum mechanical factor equal 1/22 in Einstein’s purely relativistic equation. This factor on the other hand is derivable from the intrinsic hyperbolic Cantor set nature of quantum entanglement.展开更多
We report on the first dark-matter(DM)search results from PandaX-I,a low threshold dual-phase xenon experiment operating at the China JinPing Underground Laboratory.In the 37-kg liquid xenon target with 17.4 live-days...We report on the first dark-matter(DM)search results from PandaX-I,a low threshold dual-phase xenon experiment operating at the China JinPing Underground Laboratory.In the 37-kg liquid xenon target with 17.4 live-days of exposure,no DM particle candidate event was found.This result sets a stringent limit for low-mass DM particles and disfavors the interpretation of previously-reported positive experimental results.The minimum upper limit,3.7×10-44cm2,for the spin-independent isoscalar DM-particle-nucleon scattering cross section is obtained at a DM-particle mass of 49 GeV/c2at 90%confidence level.展开更多
The paper reports SHRIMP U-Pb zircon data of a dark eclogite and a post-eclogite garnet-bearing gneissic granitic rock from the Bixiling area, Yuexi County, Anhui Province, in the eastern Dabie Mountains. The eclogite...The paper reports SHRIMP U-Pb zircon data of a dark eclogite and a post-eclogite garnet-bearing gneissic granitic rock from the Bixiling area, Yuexi County, Anhui Province, in the eastern Dabie Mountains. The eclogite, which is metamorphosed basic tuff, contains very scarce zircons in omphacite or garnet, but more zircons in quartz. They usually exhibit a double-layered texture, as shown clearly in cathodoluminescence images. Their inner main parts give a 206Pb/238U age of 757±7 Ma, representing the approximate age of the high-pressure (HP)- ultrahigh-pressure (UHP) metamorphic event during which the eclogite was formed. The outer peripheral parts of the zircons, which have been modified by late-stage fluids, give an age of 223±3 Ma. The granitic rock contains more zircons of anatectic origin found mostly in feldspar and quartz and usually also showing a similar composite texture. The inner main parts of the anatectic zircons with oscillatory zoning give a 206Pb/238U age of 727±15 Ma for the approximate age of the emplacement of the granitic rock, and their outer parts, an age of 219±3 Ma for a similar or even the same fluid event. It is thus suggested that the HP-UHP metamorphism of the Bixiling eclogite facies rocks took place during the Neoproterozoic Jinningian, and the Indosinian age values may only represent a late event in the nature of fluid activity.展开更多
The China JinPing underground Laboratory (CJPL) is the deepest underground laboratory running in the world at present. In such a deep underground laboratory, the cosmic ray flux is a very important and necessary par...The China JinPing underground Laboratory (CJPL) is the deepest underground laboratory running in the world at present. In such a deep underground laboratory, the cosmic ray flux is a very important and necessary parameter for rare-event experiments. A plastic scintillator telescope system has been set up to measure the cosmic ray flux. The performance of the telescope system has been studied using the cosmic rays on the ground laboratory near the CJPL. Based on the underground experimental data taken from November 2010 to December 2011 in the CJPL, which has an effective live time of 171 days, the cosmic ray muon flux in the CJPL is measured to be (2.0±0.4)×10^-10/(cm2.s). The ultra-low cosmic ray background guarantees an ideal environment for dark matter experiments at the CJPL.展开更多
Hypersphere World-Universe Model (WUM) envisions Matter carried from Universe into World from fourth spatial dimension by Dark Matter Particles (DMPs). Luminous Matter is byproduct of Dark Matter (DM) annihilation. WU...Hypersphere World-Universe Model (WUM) envisions Matter carried from Universe into World from fourth spatial dimension by Dark Matter Particles (DMPs). Luminous Matter is byproduct of Dark Matter (DM) annihilation. WUM introduces Dark Epoch (spanning from Beginning of World for 0.4 billion years) when only DMPs existed, and Luminous Epoch (ever since for 13.8 billion years). Big Bang discussed in standard cosmological model is, in our view, transition from Dark Epoch to Luminous Epoch due to Rotational Fission of Overspinning DM Supercluster’s Cores and annihilation of DMPs. WUM solves a number of physical problems in contemporary Cosmology and Astrophysics through DMPs and their interactions: Angular Momentum problem in birth and subsequent evolution of Galaxies and Extrasolar systems—how do they obtain it;Fermi Bubbles—two large structures in gamma-rays and X-rays above and below Galactic center;Mysterious Star KIC 8462852 with irregular dimmings;Coronal Heating problem in solar physics—temperature of Sun’s corona exceeding that of photosphere by millions of degrees;Cores of Sun and Earth rotating faster than their surfaces;Diversity of Gravitationally-Rounded Objects in Solar system and their Internal Heat;Lightning Initiation problem—electric fields observed inside thunderstorms are not sufficient to initiate sparks;Terrestrial Gamma-Ray Flashes—bursts of high energy X-rays and gamma rays emanating from Earth. Model makes predictions pertaining to Masses of DMPs, proposes New Types of their Interactions. WUM reveals Inter-Connectivity of Primary Cosmological Parameters and calculates their values, which are in good agreement with the latest results of their measurements.展开更多
PandaX is a large liquid-xenon detector experiment usable for direct dark-matter detection and 136Xe double-beta decay search.The central vessel was designed to accommodate a staged target volume increase from initial...PandaX is a large liquid-xenon detector experiment usable for direct dark-matter detection and 136Xe double-beta decay search.The central vessel was designed to accommodate a staged target volume increase from initially 120 kg(stage I)to 0.5 t(stage II)and eventually to a multi-ton scale.The experiment is located in the Jinping Deep-Underground Laboratory in Sichuan,China.The detector operates in dual-phase mode,allowing detection of both prompt scintillation,and ionization charge through proportional scintillation.In this paper a detailed description of the stage I detector design and performance as well as results established during the commissioning phase are presented.展开更多
It is believed that weakly interacting massive particles (WIMPs) are candidates for dark matter (DM) in our universe which come from outer space and might interact with the standard model (SM) matter of our dete...It is believed that weakly interacting massive particles (WIMPs) are candidates for dark matter (DM) in our universe which come from outer space and might interact with the standard model (SM) matter of our detectors on the earth. Many collaborations in the world are carrying out various experiments to directly detect DM particles. China Jinping underground Laboratory (CJPL) is the deepest underground laboratory in the world and provides a very promising environment for DM search. China Dark matter EXperiment (CDEX) is going to directly detect the WIMP flux with high sensitivity in the low WIMP-mass region. Both CJPL and CDEX have achieved a remarkable progress in recent three years. CDEX employs a point-contact germanium (PCGe) semi-conductor detector whose energy threshold is less than 300 eV. In this report we present the measurement results of muon flux, monitoring of radioactivity and radon concentration carried out in CJPL, as well describing the structure and performance of the 1 kg-PCGe detector in CDEX-1 and 10 kg- PCGe detector array in CDEX-10 including the detectors, electronics, shielding and cooling systems. Finally we discuss the physics goals of CDEX-1, CDEX-10 and the future CDEX-1T experiments.展开更多
The most widely accepted model of Solar System formation, known as the Nebular hypothesis, does not solve the Angular Momentum problem—why is the orbital momentum of Jupiter larger than rotational momentum of the Sun...The most widely accepted model of Solar System formation, known as the Nebular hypothesis, does not solve the Angular Momentum problem—why is the orbital momentum of Jupiter larger than rotational momentum of the Sun? The present manuscript introduces a Rotational Fission model of creation and evolution of Macrostructures of the World (Superclusters, Galaxies, Extrasolar Systems), based on Overspinning Cores of the World’s Macroobjects, and the Law of Conservation of Angular Momentum. The Hypersphere World-Universe model is the only cosmological model in existence that is consistent with this Fundamental Law.展开更多
In this paper, we discuss a Many Worlds Interpretation (MWI) of Dark Energy and Dark Matter. The universe is viewed cosmologically as a fermionic fluid with a hydrostatic pressure from “Zitterbewegung”, the quantum ...In this paper, we discuss a Many Worlds Interpretation (MWI) of Dark Energy and Dark Matter. The universe is viewed cosmologically as a fermionic fluid with a hydrostatic pressure from “Zitterbewegung”, the quantum “zig-zagging” of Dirac particles. At each point in space-time, the pressure from all possible velocity states existing in the Many Worlds sums to provide a dark energy. This provides a ratio of matter energy to pressure energy close to that observed experimentally. Visible matter is the matter observed or measured in a particular velocity state and dark matter is then considered as the unobserved fermion contributions from different orthogonal spatial directions.展开更多
文摘In this short survey, we give a complete list of the most important results obtained by El Naschie’s E-infinity Cantorian space-time theory in the realm of quantum physics and cosmology. Special attention is paid to his recent result on dark energy and revising Einstein’s famous formula .
文摘The paper concludes that the energy given by Einstein’s famous formula E = mc2 consists of two parts. The first part is the positive energy of the quantum particle modeled by the topology of the zero set. The second part is the absolute value of the negative energy of the quantum Schr?dinger wave modeled by the topology of the empty set. We reason that the latter is nothing else but the so called missing dark energy of the universe which accounts for 94.45% of the total energy, in full agreement with the WMAP and Supernova cosmic measurement which was awarded the 2011 Nobel Prize in Physics. The dark energy of the quantum wave cannot be detected in the normal way because measurement collapses the quantum wave.
文摘BACKGROUND:This study aimed to observe the effect of early goal directed therapy(EGDT)on tissue perfusion,microcirculation and tissue oxygenation in patients with septic shock.METHODS:Patients with early septic shock(<24 hours) who had been admitted to the ICU of Zhongda Hospital Affiliated to Southeast University from September 2009 through May 2011 were enrolled(research time:12 months),and they didn't meet the criteria of EGDT.Patients who had one of the following were excluded:stroke,brain injury,other types of shock,severe heart failure,acute myocardial infarction,age below 18 years,pregnancy,end-stage disease,cardiac arrest,extensive burns,oral bleeding,difficulty in opening the mouth,and the onset of septic shock beyond 24 hours.Patients treated with the standard protocol of EGDT were included.Transcutaneous pressure of oxygen and carbon dioxide(PtcO_2,PtcCO_2) were monitored and hemodynamic measurements were obtained.Side-stream dark field(SDF) imaging device was applied to obtain sublingual microcirculation.Hemodynamics,tissue oxygen,and sublingual microcirculation were compared before and after EGDT.If the variable meets the normal distribution,Student's t test was applied.Otherwise,Wilcoxon's rank-sum test was used.Correlation between variables was analyzed with Pearson's product-moment correlation coefficient method.RESULTS:Twenty patients were involved,but one patient wasn't analyzed because he didn't meet the EGDT criteria.PtcO_2 and PtcCO_2 were monitored in 19 patients,of whom sublingual microcirculation was obtained.After EGDT,PtcO_2 increased from 62.7+24.0 mmHg to 78.0±30.9mmHg(P<0.05) and tissue oxygenation index(PtcO_2/FiO_2) was 110.7+60.4 mmHg before EGDT and 141.6±78.2 mmHg after EGDT(P<0.05).The difference between PtcCO_2 and PCO_2 decreased significantly after EGDT(P<0.05).The density of perfused small vessels(PPV) and microcirculatory flow index of small vessels(MFI) tended to increase,but there were no significant differences between them(P>0.05).PtcO_2,PtcO_2/FiO_2,and PtcCO_2 were
基金This work was supported by the National Natural Sciences Foundation of China (Grant No. 49971005) and the Key Innovational Program of Chinese Academy of Sciences (Grant No. KZCX1-SW-01-04) together with the Innovational Project of the Institute of Geogra
文摘The static closed chamber technique is used in the study on the CH4 and N2O fluxes from the soils of primeval Abies fabri forest, the succession Abies fabri forest and the clear-cut areas of mid-aged Abies fabri forest in the Gongga Mountain from May 1998 to September 1999. The results indicate the following: (i) The forest soil serves as the source of atmospheric N2O at the three measurement sites, while the fluxes of CH4 are all negative, and soil is the sink of atmospheric CH4. The comparative relations of N2O emissions between the three sites are expressed as primeval Abies fabri forest > clear-cut areas > succession Abies fabri forest, and those of CH4 consumption fluxes are primeval Abies fabri forest > succession Abies fabri forest > clear-cut areas. (ii) Signifi-cant seasonal variations of N2O emission at various sites were observed, and two emission peaks of N2O occurr during summer (July—August) and spring (February—March), whereas N2O emission is relatively low in winter and spring (mid March—April). Seasonal variations of CH4 consumption at each measurement site fluctuate drastically with unclear regularities. Generally, CH4 consumption fluxes of succession Abies fabri forest and clear-cut areas are higher from mid May to late July but lower in the rest of sampling time, while the CH4 flux keeps a relatively high value even up to Sep-tember in primeval Abies fabri forest. In contrast to primeval Abies fabri forest, the CH4 absorbabili-ties of succession Abies fabri forest and clear-cut areas of mid-aged Abies fabri forest are weaker. Particularly, the absorbability of the clear-cut areas is even weaker as compared with the other two sites, for the deforestation reduces the soil absorbability of atmospheric CH4. (iii) Evident diurnal variation regularity exists in the N2O emissions of primeval Abies fabri forest, and there is a statistic positive correlation between the fluxes of N2O and air temperature (R=0.95, n=11, <0.01), and also the soil temperature of 5-cm layer (R=0.81, n=11, < 0.01), whe
基金Supported by the National Science Fund of China for Distinguished YoungScholars(30325047).
文摘Interactions between an isolate of dark septate endophytes (DSE) and roots of Dendrobium nobile Lindl. seedlings are reported in this paper. The isolate was obtained from orchid mycorrhizas on Dendrobium sp. in subtropical forest. The fungus formed typical orchid mycorrhiza in aseptic co-culture with D. nobile seedlings on modified Murashige-Skoog (MMS) medium. Anatomic observations of the infected roots showed that the DSE hyphae invaded the velamen layer, passed through passage cells in exodermis, entered the cortex cells, and then formed fungal pelotons of orchid mycorrhiza. D. nobile seedlings' plant height, stem diameter, new roots number and biomass were greatly enhanced by inoculating the fungus to seedlings. The fungus was identified as Leptodontidium by sequencing the polymerase chain reaction-amplified rDNA ITS1-5,8S-ITS2 (internal transcribed spacer (ITS)) regions and comparison with similar taxa.
文摘This paper provides an overview of the Hypersphere World-Universe Model (WUM). WUM unifies and simplifies existing cosmological models and results into a single coherent picture, and proceeds to discuss the origin, evolution, structure, ultimate fate, and primary parameters of the World. WUM explains the experimental data accumulated in the field of Cosmology and Astroparticle Physics over the last decades: the age of the world and critical energy density;the gravitational parameter and Hubble’s parameter;temperatures of the cosmic microwave background radiation and the peak of the far-infrared background radiation;gamma-ray background and cosmic neutrino background;macrostructure of the world and macroobjects structure. Additionally, the model makes predictions pertaining to masses of dark matter particles, photons, and neutrinos, proposes new types of particle interactions (Super Weak and Extremely Weak), and shows inter-connectivity of primary cosmological parameters of the world and the rise of the solar luminosity during the last 4.6 Byr. The model proposes to introduce a new fundamental parameter Q in the CODATA internationally recommended values.
文摘The Dark Matter Particle Explorer(DAMPE) mission is one of the five scientific space science missions within the framework of the Strategic Pioneer Program on Space Science of the Chinese Academy of Science(CAS) approved in 2011. The main scientific objective of DAMPE is to detect electrons and photons in the range of 5 GeV–10 TeV with unprecedented energy resolution(1.5% at 100 GeV) in order to identify possible Dark Matter(DM) signatures. It will also measure the flux of nuclei up to above 500 TeV with excellent energy resolution(40% at 800 GeV), which will bring new insights to the origin and propagation high energy cosmic rays. With its excellent photon detection capability, the DAMPE mission is well placed for new discoveries in high energy-ray astronomy as well.
文摘Starting from Witten’s eleven dimensional M-theory, the present work develops in an analogous way a corresponding dimensional fractal version where . Subsequently, the new fractal formalism is utilized to determine the measured ordinary energy density of the cosmos which turns out to be intimately linked to the new theory’s fractal dimension via non-integer irrational Lorentzian-like factor: where is Hardy’s probability of quantum entanglement. Consequently, the energy density is found from a limiting classical kinetic energy to be Here, is ‘tHooft’s renormalon of dimensional regularization. The immediate logical, mathematical and physical implication of this result is that the dark energy density of the cosmos must be in astounding agreement with cosmic measurements and observations.
文摘Previous work by Sigalotti in 2006 and recently by Hendi and Sharifzadeh in 2012 showed that all the fundamental equations of special relativity may be derived from a golden mean proportioned classical-Euclidean triangle and confirmed Einstein’s famous equation E=mc2. In the present work it is shown that exchanging the Euclidean triangle with a hyperbolic one an extended quantum relativity energy equation, namely , is obtained. The relevance of this result in understanding the true nature of the “missing” so-called dark energy of the cosmos is discussed in the light of the fact that the ratio of to E=mc2 is which agrees almost completely with the latest supernova and WMAP cosmological measurements. To put it succinctly what is really missing is a quantum mechanical factor equal 1/22 in Einstein’s purely relativistic equation. This factor on the other hand is derivable from the intrinsic hyperbolic Cantor set nature of quantum entanglement.
基金supported by the 985-Ⅲ grant from Shanghai Jiao Tong Universitythe National Basic Research Program of China from Ministry of Science and Technology of China (Grant No.2010CB833005)+6 种基金the National Natural Science Foundation of China (Grant No.11055003)the Office of Science and Technology in Shanghai Municipal Government (Grant No.11DZ2260700)support from China Postdoctoral Science Foundation (Grant No.2014M551395)sponsored by Shandong UniversityPeking Universitythe University of Marylandthe University of Michigan
文摘We report on the first dark-matter(DM)search results from PandaX-I,a low threshold dual-phase xenon experiment operating at the China JinPing Underground Laboratory.In the 37-kg liquid xenon target with 17.4 live-days of exposure,no DM particle candidate event was found.This result sets a stringent limit for low-mass DM particles and disfavors the interpretation of previously-reported positive experimental results.The minimum upper limit,3.7×10-44cm2,for the spin-independent isoscalar DM-particle-nucleon scattering cross section is obtained at a DM-particle mass of 49 GeV/c2at 90%confidence level.
文摘The paper reports SHRIMP U-Pb zircon data of a dark eclogite and a post-eclogite garnet-bearing gneissic granitic rock from the Bixiling area, Yuexi County, Anhui Province, in the eastern Dabie Mountains. The eclogite, which is metamorphosed basic tuff, contains very scarce zircons in omphacite or garnet, but more zircons in quartz. They usually exhibit a double-layered texture, as shown clearly in cathodoluminescence images. Their inner main parts give a 206Pb/238U age of 757±7 Ma, representing the approximate age of the high-pressure (HP)- ultrahigh-pressure (UHP) metamorphic event during which the eclogite was formed. The outer peripheral parts of the zircons, which have been modified by late-stage fluids, give an age of 223±3 Ma. The granitic rock contains more zircons of anatectic origin found mostly in feldspar and quartz and usually also showing a similar composite texture. The inner main parts of the anatectic zircons with oscillatory zoning give a 206Pb/238U age of 727±15 Ma for the approximate age of the emplacement of the granitic rock, and their outer parts, an age of 219±3 Ma for a similar or even the same fluid event. It is thus suggested that the HP-UHP metamorphism of the Bixiling eclogite facies rocks took place during the Neoproterozoic Jinningian, and the Indosinian age values may only represent a late event in the nature of fluid activity.
基金Supported by National Natural Science Foundation of China (10935005, 11055002, 11075090)
文摘The China JinPing underground Laboratory (CJPL) is the deepest underground laboratory running in the world at present. In such a deep underground laboratory, the cosmic ray flux is a very important and necessary parameter for rare-event experiments. A plastic scintillator telescope system has been set up to measure the cosmic ray flux. The performance of the telescope system has been studied using the cosmic rays on the ground laboratory near the CJPL. Based on the underground experimental data taken from November 2010 to December 2011 in the CJPL, which has an effective live time of 171 days, the cosmic ray muon flux in the CJPL is measured to be (2.0±0.4)×10^-10/(cm2.s). The ultra-low cosmic ray background guarantees an ideal environment for dark matter experiments at the CJPL.
文摘Hypersphere World-Universe Model (WUM) envisions Matter carried from Universe into World from fourth spatial dimension by Dark Matter Particles (DMPs). Luminous Matter is byproduct of Dark Matter (DM) annihilation. WUM introduces Dark Epoch (spanning from Beginning of World for 0.4 billion years) when only DMPs existed, and Luminous Epoch (ever since for 13.8 billion years). Big Bang discussed in standard cosmological model is, in our view, transition from Dark Epoch to Luminous Epoch due to Rotational Fission of Overspinning DM Supercluster’s Cores and annihilation of DMPs. WUM solves a number of physical problems in contemporary Cosmology and Astrophysics through DMPs and their interactions: Angular Momentum problem in birth and subsequent evolution of Galaxies and Extrasolar systems—how do they obtain it;Fermi Bubbles—two large structures in gamma-rays and X-rays above and below Galactic center;Mysterious Star KIC 8462852 with irregular dimmings;Coronal Heating problem in solar physics—temperature of Sun’s corona exceeding that of photosphere by millions of degrees;Cores of Sun and Earth rotating faster than their surfaces;Diversity of Gravitationally-Rounded Objects in Solar system and their Internal Heat;Lightning Initiation problem—electric fields observed inside thunderstorms are not sufficient to initiate sparks;Terrestrial Gamma-Ray Flashes—bursts of high energy X-rays and gamma rays emanating from Earth. Model makes predictions pertaining to Masses of DMPs, proposes New Types of their Interactions. WUM reveals Inter-Connectivity of Primary Cosmological Parameters and calculates their values, which are in good agreement with the latest results of their measurements.
基金supported by a 985 grant from Shanghai Jiao Tong Universitythe National Basic Research Program of China (Grant No. 2010CB833005)+4 种基金the National Natural Science Foundation of China (Grant No. 11055003)the Office of Science and Technology in Shanghai Municipal Government (Grant No. 11DZ2260700)sponsored by Shandong University, Peking Universitythe University of Marylandthe University of Michigan
文摘PandaX is a large liquid-xenon detector experiment usable for direct dark-matter detection and 136Xe double-beta decay search.The central vessel was designed to accommodate a staged target volume increase from initially 120 kg(stage I)to 0.5 t(stage II)and eventually to a multi-ton scale.The experiment is located in the Jinping Deep-Underground Laboratory in Sichuan,China.The detector operates in dual-phase mode,allowing detection of both prompt scintillation,and ionization charge through proportional scintillation.In this paper a detailed description of the stage I detector design and performance as well as results established during the commissioning phase are presented.
文摘It is believed that weakly interacting massive particles (WIMPs) are candidates for dark matter (DM) in our universe which come from outer space and might interact with the standard model (SM) matter of our detectors on the earth. Many collaborations in the world are carrying out various experiments to directly detect DM particles. China Jinping underground Laboratory (CJPL) is the deepest underground laboratory in the world and provides a very promising environment for DM search. China Dark matter EXperiment (CDEX) is going to directly detect the WIMP flux with high sensitivity in the low WIMP-mass region. Both CJPL and CDEX have achieved a remarkable progress in recent three years. CDEX employs a point-contact germanium (PCGe) semi-conductor detector whose energy threshold is less than 300 eV. In this report we present the measurement results of muon flux, monitoring of radioactivity and radon concentration carried out in CJPL, as well describing the structure and performance of the 1 kg-PCGe detector in CDEX-1 and 10 kg- PCGe detector array in CDEX-10 including the detectors, electronics, shielding and cooling systems. Finally we discuss the physics goals of CDEX-1, CDEX-10 and the future CDEX-1T experiments.
文摘The most widely accepted model of Solar System formation, known as the Nebular hypothesis, does not solve the Angular Momentum problem—why is the orbital momentum of Jupiter larger than rotational momentum of the Sun? The present manuscript introduces a Rotational Fission model of creation and evolution of Macrostructures of the World (Superclusters, Galaxies, Extrasolar Systems), based on Overspinning Cores of the World’s Macroobjects, and the Law of Conservation of Angular Momentum. The Hypersphere World-Universe model is the only cosmological model in existence that is consistent with this Fundamental Law.
文摘In this paper, we discuss a Many Worlds Interpretation (MWI) of Dark Energy and Dark Matter. The universe is viewed cosmologically as a fermionic fluid with a hydrostatic pressure from “Zitterbewegung”, the quantum “zig-zagging” of Dirac particles. At each point in space-time, the pressure from all possible velocity states existing in the Many Worlds sums to provide a dark energy. This provides a ratio of matter energy to pressure energy close to that observed experimentally. Visible matter is the matter observed or measured in a particular velocity state and dark matter is then considered as the unobserved fermion contributions from different orthogonal spatial directions.