In this paper,we study compressed data separation(CDS)problem,i.e.,sparse data separation from a few linear random measurements.We propose the nonconvex ℓ_(q)-split analysis with ℓ_(∞)-constraint and 0<q≤1.We cal...In this paper,we study compressed data separation(CDS)problem,i.e.,sparse data separation from a few linear random measurements.We propose the nonconvex ℓ_(q)-split analysis with ℓ_(∞)-constraint and 0<q≤1.We call the algorithm ℓ_(q)-split-analysis Dantzig selector(ℓ_(q)-split-analysis DS).We show that the two distinct subcomponents that are approximately sparse in terms of two different dictionaries could be stably approximated via the ℓ_(q)-split-analysis DS,provided that the measurement matrix satisfies either a classical D-RIP(Restricted Isometry Property with respect to Dictionaries and ℓ_(2) norm)or a relatively new(D,q)-RIP(RIP with respect to Dictionaries and ℓ_(q)-quasi norm)condition and the two different dictionaries satisfy a mutual coherence condition between them.For the Gaussian random measurements,the measurement number needed for the(D,q)-RIP condition is far less than those needed for the D-RIP condition and the(D,1)-RIP condition when q is small enough.展开更多
This paper considers approximately sparse signal and low-rank matrix’s recovery via truncated norm minimization minx∥xT∥q and minX∥XT∥Sq from noisy measurements.We first introduce truncated sparse approximation p...This paper considers approximately sparse signal and low-rank matrix’s recovery via truncated norm minimization minx∥xT∥q and minX∥XT∥Sq from noisy measurements.We first introduce truncated sparse approximation property,a more general robust null space property,and establish the stable recovery of signals and matrices under the truncated sparse approximation property.We also explore the relationship between the restricted isometry property and truncated sparse approximation property.And we also prove that if a measurement matrix A or linear map A satisfies truncated sparse approximation property of order k,then the first inequality in restricted isometry property of order k and of order 2k can hold for certain different constantsδk andδ2k,respectively.Last,we show that ifδs(k+|T^c|)<√(s-1)/s for some s≥4/3,then measurement matrix A and linear map A satisfy truncated sparse approximation property of order k.It should be pointed out that when Tc=Ф,our conclusion implies that sparse approximation property of order k is weaker than restricted isometry property of order sk.展开更多
As two popularly used variable selection methods, the Dantzig selector and the LASSO have been proved asymptotically equivalent in some scenarios. However, it is not the case in general for linear models, as disclosed...As two popularly used variable selection methods, the Dantzig selector and the LASSO have been proved asymptotically equivalent in some scenarios. However, it is not the case in general for linear models, as disclosed in Gai, Zhu and Lin's paper in 2013. In this paper, it is further shown that generally the asymptotic equivalence is not true either for a general single-index model with random design of predictors. To achieve this goal, the authors systematically investigate necessary and sufficient conditions for the consistent model selection of the Dantzig selector. An adaptive Dantzig selector is also recommended for the cases where those conditions are not satisfied. Also, different from existing methods for linear models, no distributional assumption on error term is needed with a trade-off that more stringent condition on the predictor vector is assumed. A small scale simulation is conducted to examine the performances of the Dantzig selector and the adaptive Dantzig selector.展开更多
This study adopts the Dantzig’s Simplex method to investigate optimization of sand casting parameters for optimum service performance. Some process variables and mechanical properties were adapted into the Simplex me...This study adopts the Dantzig’s Simplex method to investigate optimization of sand casting parameters for optimum service performance. Some process variables and mechanical properties were adapted into the Simplex method. Aluminium alloy samples were cast, machined and subjected to a series of mechanical tests. From the body of data collected, linear functions and constraint equations were formulated and employed in the Dantzig’s Simplex method for optimization of process parameters. The results showed that the Simplex method can be adapted for studying performance opti- mization of castings.展开更多
In this paper,we address the complex problem of dock-door assignment and truck scheduling within cross-docking operations.This is a problem that requires frequent resolution throughout the operational day,as disruptio...In this paper,we address the complex problem of dock-door assignment and truck scheduling within cross-docking operations.This is a problem that requires frequent resolution throughout the operational day,as disruptions often invalidate the optimal plan.Given the problem's highly combinatorial nature,finding an optimal solution demands significant computational time and resources.However,the distribution of data across problem instances over a lengthy planning horizon remains consistently stable,with minimal concern regarding distribution shift.These factors collectively establish the problem as an ideal candidate for a learn-to-optimize solution strategy.We propose a Dantzig-Wolfe reformulation,solving it via both a conventional branch-and-price approach and a neural branch-and-price approach,the latter of which employs imitation learning.Additionally,we introduce some classes of valid inequalities to enhance and refine the pricing problem through a branch-and-cut scheme.Our computational experiments demonstrate that this methodology is not only feasible but also presents a viable alternative to the traditional branch-and-price algorithms typically utilized for such challenges.展开更多
基金Supported by the National Key Research and Development Program of China(Grant No.2021YFA1003500)the NSFC(Grant Nos.U21A20426,11971427,12071426 and 11901518)。
文摘In this paper,we study compressed data separation(CDS)problem,i.e.,sparse data separation from a few linear random measurements.We propose the nonconvex ℓ_(q)-split analysis with ℓ_(∞)-constraint and 0<q≤1.We call the algorithm ℓ_(q)-split-analysis Dantzig selector(ℓ_(q)-split-analysis DS).We show that the two distinct subcomponents that are approximately sparse in terms of two different dictionaries could be stably approximated via the ℓ_(q)-split-analysis DS,provided that the measurement matrix satisfies either a classical D-RIP(Restricted Isometry Property with respect to Dictionaries and ℓ_(2) norm)or a relatively new(D,q)-RIP(RIP with respect to Dictionaries and ℓ_(q)-quasi norm)condition and the two different dictionaries satisfy a mutual coherence condition between them.For the Gaussian random measurements,the measurement number needed for the(D,q)-RIP condition is far less than those needed for the D-RIP condition and the(D,1)-RIP condition when q is small enough.
基金supported by the National Natural Science Foundation of China(11871109)NSAF(U1830107)the Science Challenge Project(TZ2018001)
文摘This paper considers approximately sparse signal and low-rank matrix’s recovery via truncated norm minimization minx∥xT∥q and minX∥XT∥Sq from noisy measurements.We first introduce truncated sparse approximation property,a more general robust null space property,and establish the stable recovery of signals and matrices under the truncated sparse approximation property.We also explore the relationship between the restricted isometry property and truncated sparse approximation property.And we also prove that if a measurement matrix A or linear map A satisfies truncated sparse approximation property of order k,then the first inequality in restricted isometry property of order k and of order 2k can hold for certain different constantsδk andδ2k,respectively.Last,we show that ifδs(k+|T^c|)<√(s-1)/s for some s≥4/3,then measurement matrix A and linear map A satisfy truncated sparse approximation property of order k.It should be pointed out that when Tc=Ф,our conclusion implies that sparse approximation property of order k is weaker than restricted isometry property of order sk.
基金supported by the National Natural Science Foundation of China under Grant Nos.11501354,11201499,11301309 and 714732802015 Shanghai Young Faculty Training Program under Grant No.A1A-6119-15-003
文摘As two popularly used variable selection methods, the Dantzig selector and the LASSO have been proved asymptotically equivalent in some scenarios. However, it is not the case in general for linear models, as disclosed in Gai, Zhu and Lin's paper in 2013. In this paper, it is further shown that generally the asymptotic equivalence is not true either for a general single-index model with random design of predictors. To achieve this goal, the authors systematically investigate necessary and sufficient conditions for the consistent model selection of the Dantzig selector. An adaptive Dantzig selector is also recommended for the cases where those conditions are not satisfied. Also, different from existing methods for linear models, no distributional assumption on error term is needed with a trade-off that more stringent condition on the predictor vector is assumed. A small scale simulation is conducted to examine the performances of the Dantzig selector and the adaptive Dantzig selector.
文摘This study adopts the Dantzig’s Simplex method to investigate optimization of sand casting parameters for optimum service performance. Some process variables and mechanical properties were adapted into the Simplex method. Aluminium alloy samples were cast, machined and subjected to a series of mechanical tests. From the body of data collected, linear functions and constraint equations were formulated and employed in the Dantzig’s Simplex method for optimization of process parameters. The results showed that the Simplex method can be adapted for studying performance opti- mization of castings.
文摘In this paper,we address the complex problem of dock-door assignment and truck scheduling within cross-docking operations.This is a problem that requires frequent resolution throughout the operational day,as disruptions often invalidate the optimal plan.Given the problem's highly combinatorial nature,finding an optimal solution demands significant computational time and resources.However,the distribution of data across problem instances over a lengthy planning horizon remains consistently stable,with minimal concern regarding distribution shift.These factors collectively establish the problem as an ideal candidate for a learn-to-optimize solution strategy.We propose a Dantzig-Wolfe reformulation,solving it via both a conventional branch-and-price approach and a neural branch-and-price approach,the latter of which employs imitation learning.Additionally,we introduce some classes of valid inequalities to enhance and refine the pricing problem through a branch-and-cut scheme.Our computational experiments demonstrate that this methodology is not only feasible but also presents a viable alternative to the traditional branch-and-price algorithms typically utilized for such challenges.