期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
The Extended Non-Elementary Amplitude Functions as Solutions to the Damped Pendulum Equation, the Van der Pol Equation, the Damped Duffing Equation, the Lienard Equation and the Lorenz Equations
1
作者 Magne Stensland 《Journal of Applied Mathematics and Physics》 2023年第11期3428-3445,共18页
In this paper, we define some non-elementary amplitude functions that are giving solutions to some well-known second-order nonlinear ODEs and the Lorenz equations, but not the chaos case. We are giving the solutions a... In this paper, we define some non-elementary amplitude functions that are giving solutions to some well-known second-order nonlinear ODEs and the Lorenz equations, but not the chaos case. We are giving the solutions a name, a symbol and putting them into a group of functions and into the context of other functions. These solutions are equal to the amplitude, or upper limit of integration in a non-elementary integral that can be arbitrary. In order to define solutions to some short second-order nonlinear ODEs, we will make an extension to the general amplitude function. The only disadvantage is that the first derivative to these solutions contains an integral that disappear at the second derivation. We will also do a second extension: the two-integral amplitude function. With this extension we have the solution to a system of ODEs having a very strange behavior. Using the extended amplitude functions, we can define solutions to many short second-order nonlinear ODEs. 展开更多
关键词 Non-Elementary Functions Second-Order Nonlinear Autonomous ODE damped Pendulum equation Van der Pol equation damped duffing equation Lienard equation Lorenz System
下载PDF
应用山路引理证Duffing方程周期解的存在性
2
作者 潘建丹 周伟灿 《阜阳师范学院学报(自然科学版)》 2009年第1期18-21,共4页
应用变分方法,将一类无阻尼Duffing方程周期边值问题转化为与之等价的非线性泛函的临界点问题,并利用山路引理证明了这类Duffing方程2π-周期解的存在性.
关键词 无阻尼duffing方程 嵌入定理 临界值 P.S.条件 山路引理
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部