Droughts occur in all climatic regions around the world costing a large expense to global economies. Reasonably accurate prediction of drought events helps water managers proper planning for utilization of limited wat...Droughts occur in all climatic regions around the world costing a large expense to global economies. Reasonably accurate prediction of drought events helps water managers proper planning for utilization of limited water resources and distribution of available waters to different sectors and avoid catastrophic consequences. Therefore, a means to create a simplistic approach for forecasting drought conditions with easily accessible parameters is highly desirable. This study proposes and evaluates newly developed accurate prediction models utilizing various hydrologic, meteorological, and geohydrology parameters along with the use of Artificial Neural Network (ANN) models with various forecast lead times. The present study develops a multitude of forecasting models to predict drought indices such as the Standard Precipitation Index with a lead-time of up to 6 months, and the Soil Moisture Index with a lead-time of 3 months. Furthermore, prediction models with the capability of approximating surface and groundwater storage levels including the Ross River Dam level have been developed with relatively high accuracy with a lead-time of 3 months. The results obtained from these models were compared to current values, revealing that ANN based approach can be used as a simple and effective predictive model that can be utilized for prediction of different aspects of drought scenarios in a typical study area like Townsville, North Queensland, Australia which had suffered severe recent drought conditions for almost six recent years (2014 to early 2019).展开更多
In order to accurately predict and control the aging process of dams, new information should be collected continuously to renew the quantitative evaluation of dam safety levels. Owing to the complex structural charact...In order to accurately predict and control the aging process of dams, new information should be collected continuously to renew the quantitative evaluation of dam safety levels. Owing to the complex structural characteristics of dams, it is quite difficult to predict the time-varying factors affecting their safety levels. It is not feasible to employ dynamic reliability indices to evaluate the actual safety levels of dams. Based on the relevant regulations for dam safety classification in China, a dynamic probability description of dam safety levels was developed. Using the Bayesian approach and effective information mining, as well as real-time information, this study achieved more rational evaluation and prediction of dam safety levels. With the Bayesian expression of discrete stochastic variables, the a priori probabilities of the dam safety levels determined by experts were combined wfth the likelihood probability of the real-time check information, and the probability information for the evaluation of dam safety levels was renewed. The probability index was then applied to dam rehabilitation decision-making. This method helps reduce the difficulty and uncertainty of the evaluation of dam safety levels and complies with the current safe decision-making regulations for dams in China. It also enhances the application of current risk analysis methods for dam safety levels.展开更多
文摘Droughts occur in all climatic regions around the world costing a large expense to global economies. Reasonably accurate prediction of drought events helps water managers proper planning for utilization of limited water resources and distribution of available waters to different sectors and avoid catastrophic consequences. Therefore, a means to create a simplistic approach for forecasting drought conditions with easily accessible parameters is highly desirable. This study proposes and evaluates newly developed accurate prediction models utilizing various hydrologic, meteorological, and geohydrology parameters along with the use of Artificial Neural Network (ANN) models with various forecast lead times. The present study develops a multitude of forecasting models to predict drought indices such as the Standard Precipitation Index with a lead-time of up to 6 months, and the Soil Moisture Index with a lead-time of 3 months. Furthermore, prediction models with the capability of approximating surface and groundwater storage levels including the Ross River Dam level have been developed with relatively high accuracy with a lead-time of 3 months. The results obtained from these models were compared to current values, revealing that ANN based approach can be used as a simple and effective predictive model that can be utilized for prediction of different aspects of drought scenarios in a typical study area like Townsville, North Queensland, Australia which had suffered severe recent drought conditions for almost six recent years (2014 to early 2019).
基金supported by the National Science and Technology Support Program of China (Program for the Eleventh Five-Year Plan, Grant No. 2006BAC14B03 and 2006BAC05B03)the National Natural Science Foundation of China (Grant No. 50679043)
文摘In order to accurately predict and control the aging process of dams, new information should be collected continuously to renew the quantitative evaluation of dam safety levels. Owing to the complex structural characteristics of dams, it is quite difficult to predict the time-varying factors affecting their safety levels. It is not feasible to employ dynamic reliability indices to evaluate the actual safety levels of dams. Based on the relevant regulations for dam safety classification in China, a dynamic probability description of dam safety levels was developed. Using the Bayesian approach and effective information mining, as well as real-time information, this study achieved more rational evaluation and prediction of dam safety levels. With the Bayesian expression of discrete stochastic variables, the a priori probabilities of the dam safety levels determined by experts were combined wfth the likelihood probability of the real-time check information, and the probability information for the evaluation of dam safety levels was renewed. The probability index was then applied to dam rehabilitation decision-making. This method helps reduce the difficulty and uncertainty of the evaluation of dam safety levels and complies with the current safe decision-making regulations for dams in China. It also enhances the application of current risk analysis methods for dam safety levels.