Content and distribution patterns of rare earth dements (REEs) in the suspended particulate material (SPM) of Daliao River system were investigated and compared with those in the fiver and sea sediments, loess, an...Content and distribution patterns of rare earth dements (REEs) in the suspended particulate material (SPM) of Daliao River system were investigated and compared with those in the fiver and sea sediments, loess, and soils of China. Twenty-seven samples of SPM were taken in Daliao River system and digested with various acids followed by ICP-MS analysis for REEs and ICP-OES analysis for Al, Fe, Mn, Ti, Mg, Ca, Na, and K, to measure the total concentrations of these elements. Results indicated that the spatial change in the content of REEs was great, with the coefficient of variance (CV) from 84% to 105%, while the contents of REEs were significantly correlated with each other. Chondrite-normalized patterns of REEs were characterized by higher enrichment of light REEs than heavy REEs, and a depletion of Eu in the SPM was generally found. The positive anomaly of Eu in the SPM of Xi River was due to anthropogenic source in Shenyang City. Furthermore, chondfite- and upper continent crust-normalized patterns of REEs in the SPM of Daliao River system, sediments of Yangtze River and Yellow River, sediments of Yellow Sea, East Sea, South Sea of China, and loess and soil of China, were very similar to one another. These demonstrated that the weathering and sedimentary processes resulted in constant REE distribution not only in the typical sedimentary rocks, but also in the modem riverine particle, sea sediments, loess, and soils.展开更多
The Daliao River, as an important water system in Northeast China, was reported to be heavily polluted by polycyclic aromatic hydrocarbons (PAHs). Aerobic biodegradations of four selected PAHs (naphthalene, phenant...The Daliao River, as an important water system in Northeast China, was reported to be heavily polluted by polycyclic aromatic hydrocarbons (PAHs). Aerobic biodegradations of four selected PAHs (naphthalene, phenanthrene, fluorene and anthracene) alone or in their mixture in river sediments from the Daliao River water systems were studied in microcosm systems. Effects of additional carbon source, inorganic nitrogen and phosphorus, temperature variation on PAHs degradation were also investigated. Results showed that the degradation of phenanthrene in water alone system was faster than that in water-sediment combined system. Degradation of phenanthrene in sediment was enhanced by adding yeast extract and ammonium, but retarded by adding sodium acetate and not significantly influenced by adding phosphate. Although PAHs could also be biodegraded in sediment under low temperature (5~C), much lower degradation rate was observed. Sediments from the three main streams of the Daliao River water system (the Hun River, the Taizi River and the Daliao River) demonstrated different degradation capacities and patterns to four PAHs. Average removal rates (15 or 19 d) of naphthalene, phenanthrene, fluorene and anthracene by sediment were in the range of 0.062-0.087, 0.005-0.066, 0.008- 0.016 and 0-0.059 mg/(L.d), respectively. As a result, naphthalene was most easily degraded compound, anthracene was the hardest one. In multiple PAHs systems, the interactions between PAHs influenced each PAH biodegradation.展开更多
基金the National Basic Key Research Program of China (2004CB418502)the National Natural Science Foundation of China (40671002)
文摘Content and distribution patterns of rare earth dements (REEs) in the suspended particulate material (SPM) of Daliao River system were investigated and compared with those in the fiver and sea sediments, loess, and soils of China. Twenty-seven samples of SPM were taken in Daliao River system and digested with various acids followed by ICP-MS analysis for REEs and ICP-OES analysis for Al, Fe, Mn, Ti, Mg, Ca, Na, and K, to measure the total concentrations of these elements. Results indicated that the spatial change in the content of REEs was great, with the coefficient of variance (CV) from 84% to 105%, while the contents of REEs were significantly correlated with each other. Chondrite-normalized patterns of REEs were characterized by higher enrichment of light REEs than heavy REEs, and a depletion of Eu in the SPM was generally found. The positive anomaly of Eu in the SPM of Xi River was due to anthropogenic source in Shenyang City. Furthermore, chondfite- and upper continent crust-normalized patterns of REEs in the SPM of Daliao River system, sediments of Yangtze River and Yellow River, sediments of Yellow Sea, East Sea, South Sea of China, and loess and soil of China, were very similar to one another. These demonstrated that the weathering and sedimentary processes resulted in constant REE distribution not only in the typical sedimentary rocks, but also in the modem riverine particle, sea sediments, loess, and soils.
基金supported by the National Basic Re-search Program (973) of China (No. 2004CB418502)
文摘The Daliao River, as an important water system in Northeast China, was reported to be heavily polluted by polycyclic aromatic hydrocarbons (PAHs). Aerobic biodegradations of four selected PAHs (naphthalene, phenanthrene, fluorene and anthracene) alone or in their mixture in river sediments from the Daliao River water systems were studied in microcosm systems. Effects of additional carbon source, inorganic nitrogen and phosphorus, temperature variation on PAHs degradation were also investigated. Results showed that the degradation of phenanthrene in water alone system was faster than that in water-sediment combined system. Degradation of phenanthrene in sediment was enhanced by adding yeast extract and ammonium, but retarded by adding sodium acetate and not significantly influenced by adding phosphate. Although PAHs could also be biodegraded in sediment under low temperature (5~C), much lower degradation rate was observed. Sediments from the three main streams of the Daliao River water system (the Hun River, the Taizi River and the Daliao River) demonstrated different degradation capacities and patterns to four PAHs. Average removal rates (15 or 19 d) of naphthalene, phenanthrene, fluorene and anthracene by sediment were in the range of 0.062-0.087, 0.005-0.066, 0.008- 0.016 and 0-0.059 mg/(L.d), respectively. As a result, naphthalene was most easily degraded compound, anthracene was the hardest one. In multiple PAHs systems, the interactions between PAHs influenced each PAH biodegradation.