The discrete-variational method within the framework of density functional theory was used to investigate the process of O2 adsorption occurring on the surface of NiTi alloy. The calculated results showed that O2 exhi...The discrete-variational method within the framework of density functional theory was used to investigate the process of O2 adsorption occurring on the surface of NiTi alloy. The calculated results showed that O2 exhibits the adsorption state of O2- (0.36< 8 <0.70).O2 only interact with one nearest surface Ti atom, and the Ti atom only adsorbs one oxygen atom of the O2 molecule. Other cluster atoms would not be influenced in the adsorption process. The density of state analysis showed that the interaction between Ti and 0 atom is mainly contributed to 2p (0) and 4s (Ti) orbitals.展开更多
The electronic structures of LiYF4:Ce^3+ and LiYF4 crystal simulated by an embedded (in a microcrystal containing 1938 ions) cluster CeY4Li8F24, and Y5LisF24 respectively, were computed by the ab initio self-consi...The electronic structures of LiYF4:Ce^3+ and LiYF4 crystal simulated by an embedded (in a microcrystal containing 1938 ions) cluster CeY4Li8F24, and Y5LisF24 respectively, were computed by the ab initio self-consistent relativistic DV-Xa (discrete variational Xa) method. The ground-state calculation showed that only the lowest 5d level Ed of Ce^3+ ion lies around the BCB (bottom of the conduction band) while the lowest 4f levels is 2.5 eV lower than BCB. The CB states consist of 4d of Y mixed with 5d of Ce, even for the wavefunctions (WFS) with energy Ed under BCB there are still 24% of Y-4d and 9% of F-2p as components. So, they are not pure crystal-field states at all. Furthermore, transition state (TS) calculation was performed to obtain the 4f→5d transition energies Efd, to improve the previous calculation performed by Andriessen et al, in which a small CeF8 cluster embedded in an array of point charge was used and the results of ground-state calculation were roughly used to compare with the observed 4f→5 d transition energies. The ionic radius of Ce^3+ is larger than that of y^3+ , so we had also modeled approximately the lattice relaxation. As results, the CeY4Li8F24 cluster with 4.56 % outward relaxation (of the nearest-neighbor and next nearest-neighbor eight fluorines) has the lowest total energy and gave satisfactory 4f→5d energies Efd, but the ground-state calculated Ed is 0.68 eV higher than BCB. For another cluster with 7.36% outward relaxation the Ed is 0.43 eV lower than BCB, which makes the observation of fine structure (including zero-phonon line) of the lowest 5 d band understandable easier, but the splits between the transition energies Efd were not as good as the former. Therefore, we consider the relaxation is some how around 4. 56% -7.36% outward, not as large as 10% proposed by Andriessen et al.展开更多
The ab initio self-consistent DV-Xa (discrete variational Xa) method was used in its relativistic and spin-polarized model to investigate the ground-state electronic structttres of the crystal YPO4 and YPO4:RE^3+ ...The ab initio self-consistent DV-Xa (discrete variational Xa) method was used in its relativistic and spin-polarized model to investigate the ground-state electronic structttres of the crystal YPO4 and YPO4:RE^3+ (RE=Ce, Pr and Sm) and f-d transition energies of the lattice. The calculation was performed on the clusters Y5P10O32 and REY4P10O32 embedded in a microcrystal containing about 1500 ions, respectively. The ground-state calculation provided the locations of the 4f and 5d crystal-field one-electron levels of RE^3+ relative to the valence and conduction bands of host, the curve of total and the partial density of states, and the corresponding occupation numbers, etc. Especially, the transition-state calculation was performed to obtain the 4f→5d transition energies of RE^3+ in comparison to the experimental observations. The lattice relaxation caused by the dopant ion RE3+ was discussed based on the total energy calculation and the transition-state calculation of the f-d transition energies.展开更多
The electronic structures of BaMgF4 crystals containing an F colour centre are studied within the framework of the fully relativistic self-consistent Direc-Slater theory, using a numerically discrete variational (DV...The electronic structures of BaMgF4 crystals containing an F colour centre are studied within the framework of the fully relativistic self-consistent Direc-Slater theory, using a numerically discrete variational (DV-Xa) method. It is concluded from the calculated results that the energy levels of the F colour centre are located in the forbidden band. The optical transition energy from the ground state to the excited state for the F colour centre is about 5.12 eV, which corresponds to the 242-nm absorption band. These calculated results can explain the origin of the absorption bands.展开更多
基金This work was financially supported by the National Natural Science Foundation of China,and the number was 50081001.
文摘The discrete-variational method within the framework of density functional theory was used to investigate the process of O2 adsorption occurring on the surface of NiTi alloy. The calculated results showed that O2 exhibits the adsorption state of O2- (0.36< 8 <0.70).O2 only interact with one nearest surface Ti atom, and the Ti atom only adsorbs one oxygen atom of the O2 molecule. Other cluster atoms would not be influenced in the adsorption process. The density of state analysis showed that the interaction between Ti and 0 atom is mainly contributed to 2p (0) and 4s (Ti) orbitals.
文摘The electronic structures of LiYF4:Ce^3+ and LiYF4 crystal simulated by an embedded (in a microcrystal containing 1938 ions) cluster CeY4Li8F24, and Y5LisF24 respectively, were computed by the ab initio self-consistent relativistic DV-Xa (discrete variational Xa) method. The ground-state calculation showed that only the lowest 5d level Ed of Ce^3+ ion lies around the BCB (bottom of the conduction band) while the lowest 4f levels is 2.5 eV lower than BCB. The CB states consist of 4d of Y mixed with 5d of Ce, even for the wavefunctions (WFS) with energy Ed under BCB there are still 24% of Y-4d and 9% of F-2p as components. So, they are not pure crystal-field states at all. Furthermore, transition state (TS) calculation was performed to obtain the 4f→5d transition energies Efd, to improve the previous calculation performed by Andriessen et al, in which a small CeF8 cluster embedded in an array of point charge was used and the results of ground-state calculation were roughly used to compare with the observed 4f→5 d transition energies. The ionic radius of Ce^3+ is larger than that of y^3+ , so we had also modeled approximately the lattice relaxation. As results, the CeY4Li8F24 cluster with 4.56 % outward relaxation (of the nearest-neighbor and next nearest-neighbor eight fluorines) has the lowest total energy and gave satisfactory 4f→5d energies Efd, but the ground-state calculated Ed is 0.68 eV higher than BCB. For another cluster with 7.36% outward relaxation the Ed is 0.43 eV lower than BCB, which makes the observation of fine structure (including zero-phonon line) of the lowest 5 d band understandable easier, but the splits between the transition energies Efd were not as good as the former. Therefore, we consider the relaxation is some how around 4. 56% -7.36% outward, not as large as 10% proposed by Andriessen et al.
基金the National Natural Science Foundation of China (50332050 and 10474092)Specialized Research Fund for the Doc-toral Program of Higher Education (20060358054)
文摘The ab initio self-consistent DV-Xa (discrete variational Xa) method was used in its relativistic and spin-polarized model to investigate the ground-state electronic structttres of the crystal YPO4 and YPO4:RE^3+ (RE=Ce, Pr and Sm) and f-d transition energies of the lattice. The calculation was performed on the clusters Y5P10O32 and REY4P10O32 embedded in a microcrystal containing about 1500 ions, respectively. The ground-state calculation provided the locations of the 4f and 5d crystal-field one-electron levels of RE^3+ relative to the valence and conduction bands of host, the curve of total and the partial density of states, and the corresponding occupation numbers, etc. Especially, the transition-state calculation was performed to obtain the 4f→5d transition energies of RE^3+ in comparison to the experimental observations. The lattice relaxation caused by the dopant ion RE3+ was discussed based on the total energy calculation and the transition-state calculation of the f-d transition energies.
基金supported by the Foundation of Shanghai Municipal Education Committee,China (Grant No. 09YZ210)the Shanghai Leading Academic Discipline Project (Grant No. S30502)
文摘The electronic structures of BaMgF4 crystals containing an F colour centre are studied within the framework of the fully relativistic self-consistent Direc-Slater theory, using a numerically discrete variational (DV-Xa) method. It is concluded from the calculated results that the energy levels of the F colour centre are located in the forbidden band. The optical transition energy from the ground state to the excited state for the F colour centre is about 5.12 eV, which corresponds to the 242-nm absorption band. These calculated results can explain the origin of the absorption bands.