The flotation and adsorption behaviors of dodecyltrimethylammonium chloride(DTAC) and cetyltrimethylammonium chloride(CTAC) on diaspore and kaolinite were studied.Solution depletion methods were used to determine ...The flotation and adsorption behaviors of dodecyltrimethylammonium chloride(DTAC) and cetyltrimethylammonium chloride(CTAC) on diaspore and kaolinite were studied.Solution depletion methods were used to determine adsorption isotherms.Fluorescence probe test along with Zeta potential measurement was also conducted for further investigation into the adsorption of quaternary amines at the mineral-water interface.The results show that the flotation recovery of kaolinite decreases with an increase in pH when DTAC and CTAC are used as collectors,while diaspore is on the contrary.As the carbon chain length of the collectors increases,the flotation recoveries of minerals increase.However,the increment rate of kaolinite is significantly lower than that of diaspore.In the low surfactant concentration range,the cationic surfactants adsorb readily on diaspore surfaces just due to electrostatic interactions.As for kaolinite surfaces,ion exchange process also exists.With a further increase in surfactant concentration,the adsorption was ascribed to the hydrophobic association of chain-chain interactions.Micro-polarity of mineral surfaces study shows that CTAC has a better hydrophobic characteristic than DTAC.Larger aggregates are formed with CTAC on diaspore than on kaolinite in the same solution concentration.The results also indicate that the chain length of cationic surfactants has a greater influence on the adsorption of diaspore than on kaolinite,which is consistent with the flotation result.展开更多
FVC公司发布最新网络会议解决方案 全球领先的超媒体网络会议和通信解决方案供应商-美国FVC公司宣布推出最新版本的Click to Meet 4.0(CTM4.0)超媒体通信解决方案。CTM4.0网络会议解决方案对屡获大奖的CTM2.1产品进行了大幅的改进.对视...FVC公司发布最新网络会议解决方案 全球领先的超媒体网络会议和通信解决方案供应商-美国FVC公司宣布推出最新版本的Click to Meet 4.0(CTM4.0)超媒体通信解决方案。CTM4.0网络会议解决方案对屡获大奖的CTM2.1产品进行了大幅的改进.对视频/语音/数据通信以及用户环境进行了高度集成,同时又提供很好的定制功能,因而具有很高的投资回报率和很低的拥有总成本。展开更多
This study presents the interaction between konjac glucanmannan(KGM) and cationic surfactant dodecyl trimethylammonium chloride(DTAC) to provide theoretical guidance and prediction for the experimental design and ...This study presents the interaction between konjac glucanmannan(KGM) and cationic surfactant dodecyl trimethylammonium chloride(DTAC) to provide theoretical guidance and prediction for the experimental design and application of this composite system. Dissipative particle dynamics(DPD) method was used to simulate the interaction between KGM and the cationic surfactant. Influences of concentration, temperature and shear process on the structure and properties of aggregates were mainly examined. The results revealed that the density peak increased with the increase of concentration of KGM. With increasing the temperature, density peak moved to the right and increased, and then decreased when the temperature rose to a certain value. The density peak moved to the right at the low shear rate while decreased at the high one. During simulation, the high viscosity related to the low diffusion rate, which made it difficult to form a large continuous phase.展开更多
Effects of particle size and chain length on flotation of quaternary ammonium salts (QAS) onto kaolinite have been investigated by mico-flotation tests. The two kinds of quaternary ammonium salts [RN(CH3)3] with diffe...Effects of particle size and chain length on flotation of quaternary ammonium salts (QAS) onto kaolinite have been investigated by mico-flotation tests. The two kinds of quaternary ammonium salts [RN(CH3)3] with different chain lengths, dodecyltrimethylammonium chloride (DTAC) and cetyltrimethylammonium chloride (CTAC) were used as collectors for kaolinite in different particle size fractions (0.075–0.01 mm, 0.045–0.075 mm, 0–0.045 mm). The anomalous flotation behavior of kaolinite have been further explained based on crystal structure considerations by adsorption tests and molecular dynamics (MD) simulation. The results show that the flotation recovery of kaolinite in all different particle size fractions decreases with an increase in pH when DTAC and CTAC are used as collectors. As the concentration of collectors increases, the flotation recovery increases. The longer the carbon chain of QAS is, the higher the recoveries of coarse kaolinite (0.075–0.01 mm and 0.045–0.075 mm) are. But the flotation recovery of the finest kaolinite (0–0.045 mm) decreases with chain lengths of QAS collectors increasing, which is consistent with the flotation results of unsifted kaolinite (0–0.075 mm). It is explained by the froth stability related to the residual concentration of QAS collector. In lower residual concentration, the froth stability becomes worse. Within the range of flotation collector concentration, it's easy of CTAC to be completely adsorbed by kaolinite in the particle size fraction (0–0.045 mm), which led to lower flotation recovery. Moreover, it is interesting that the particle size of kaolinite is coarser, the flotation recovery is higher. The anomalous flotation behavior of kaolinite is rationalized based on crystal structure considerations. The results of MD simulations show that the (001) kaolinite surface has the strongest interaction with DTAC, compared with the (001), (010) and (110) surfaces. On the other hand, when particle size of kaolinite is altered, the number of basal planes and ed展开更多
基金Projects (50974134,50804055) supported by the National Natural Science Foundation of ChinaProject (2005CB623701) supported by the National Basic Research Program of China
文摘The flotation and adsorption behaviors of dodecyltrimethylammonium chloride(DTAC) and cetyltrimethylammonium chloride(CTAC) on diaspore and kaolinite were studied.Solution depletion methods were used to determine adsorption isotherms.Fluorescence probe test along with Zeta potential measurement was also conducted for further investigation into the adsorption of quaternary amines at the mineral-water interface.The results show that the flotation recovery of kaolinite decreases with an increase in pH when DTAC and CTAC are used as collectors,while diaspore is on the contrary.As the carbon chain length of the collectors increases,the flotation recoveries of minerals increase.However,the increment rate of kaolinite is significantly lower than that of diaspore.In the low surfactant concentration range,the cationic surfactants adsorb readily on diaspore surfaces just due to electrostatic interactions.As for kaolinite surfaces,ion exchange process also exists.With a further increase in surfactant concentration,the adsorption was ascribed to the hydrophobic association of chain-chain interactions.Micro-polarity of mineral surfaces study shows that CTAC has a better hydrophobic characteristic than DTAC.Larger aggregates are formed with CTAC on diaspore than on kaolinite in the same solution concentration.The results also indicate that the chain length of cationic surfactants has a greater influence on the adsorption of diaspore than on kaolinite,which is consistent with the flotation result.
文摘FVC公司发布最新网络会议解决方案 全球领先的超媒体网络会议和通信解决方案供应商-美国FVC公司宣布推出最新版本的Click to Meet 4.0(CTM4.0)超媒体通信解决方案。CTM4.0网络会议解决方案对屡获大奖的CTM2.1产品进行了大幅的改进.对视频/语音/数据通信以及用户环境进行了高度集成,同时又提供很好的定制功能,因而具有很高的投资回报率和很低的拥有总成本。
基金supported by the National Natural Science Foundation of China(31471704 and 31271837)
文摘This study presents the interaction between konjac glucanmannan(KGM) and cationic surfactant dodecyl trimethylammonium chloride(DTAC) to provide theoretical guidance and prediction for the experimental design and application of this composite system. Dissipative particle dynamics(DPD) method was used to simulate the interaction between KGM and the cationic surfactant. Influences of concentration, temperature and shear process on the structure and properties of aggregates were mainly examined. The results revealed that the density peak increased with the increase of concentration of KGM. With increasing the temperature, density peak moved to the right and increased, and then decreased when the temperature rose to a certain value. The density peak moved to the right at the low shear rate while decreased at the high one. During simulation, the high viscosity related to the low diffusion rate, which made it difficult to form a large continuous phase.
文摘Effects of particle size and chain length on flotation of quaternary ammonium salts (QAS) onto kaolinite have been investigated by mico-flotation tests. The two kinds of quaternary ammonium salts [RN(CH3)3] with different chain lengths, dodecyltrimethylammonium chloride (DTAC) and cetyltrimethylammonium chloride (CTAC) were used as collectors for kaolinite in different particle size fractions (0.075–0.01 mm, 0.045–0.075 mm, 0–0.045 mm). The anomalous flotation behavior of kaolinite have been further explained based on crystal structure considerations by adsorption tests and molecular dynamics (MD) simulation. The results show that the flotation recovery of kaolinite in all different particle size fractions decreases with an increase in pH when DTAC and CTAC are used as collectors. As the concentration of collectors increases, the flotation recovery increases. The longer the carbon chain of QAS is, the higher the recoveries of coarse kaolinite (0.075–0.01 mm and 0.045–0.075 mm) are. But the flotation recovery of the finest kaolinite (0–0.045 mm) decreases with chain lengths of QAS collectors increasing, which is consistent with the flotation results of unsifted kaolinite (0–0.075 mm). It is explained by the froth stability related to the residual concentration of QAS collector. In lower residual concentration, the froth stability becomes worse. Within the range of flotation collector concentration, it's easy of CTAC to be completely adsorbed by kaolinite in the particle size fraction (0–0.045 mm), which led to lower flotation recovery. Moreover, it is interesting that the particle size of kaolinite is coarser, the flotation recovery is higher. The anomalous flotation behavior of kaolinite is rationalized based on crystal structure considerations. The results of MD simulations show that the (001) kaolinite surface has the strongest interaction with DTAC, compared with the (001), (010) and (110) surfaces. On the other hand, when particle size of kaolinite is altered, the number of basal planes and ed