传统DOA(direction of arrival)估计算法无法处理相干信号,因此提出一种基于重构噪声子空间的高精度DOA估计算法.该算法利用阵元接收数据的自协方差与互协方差信息构造成增广矩阵作为新的协方差矩阵,对该矩阵进行奇异值分解得到相应的...传统DOA(direction of arrival)估计算法无法处理相干信号,因此提出一种基于重构噪声子空间的高精度DOA估计算法.该算法利用阵元接收数据的自协方差与互协方差信息构造成增广矩阵作为新的协方差矩阵,对该矩阵进行奇异值分解得到相应的噪声子空间和特征值矩阵.为了获得更精确的信号向量,重构一个由新特征值矩阵对应的特征向量所组成的噪声子空间.最后通过谱峰搜索得到DOA估计值.算法不影响对非相干信号估计的效果,并且比IMMUSIC(improved multiple signal classification)算法具有更高的估计精度,在低信噪比及信号入射间隔较小的情况下也有良好的准确性.仿真结果表明,提出的改进算法在低信噪比及低采样快拍数的条件下,能有效估计出相干信号的波达方向.展开更多
为提高波达方向(Direction Of Arrival,DOA)的估计速度,该文基于子空间的正交性原理,利用噪声子空间及其共轭的交集进行奇异值分解(SVD)实现噪声子空间的降维,并基于降维噪声子空间与导向矢量及其共轭的双正交性提出一种2维阵列快速DOA...为提高波达方向(Direction Of Arrival,DOA)的估计速度,该文基于子空间的正交性原理,利用噪声子空间及其共轭的交集进行奇异值分解(SVD)实现噪声子空间的降维,并基于降维噪声子空间与导向矢量及其共轭的双正交性提出一种2维阵列快速DOA估计算法。理论分析和仿真实验表明:该算法不受实际阵型的限制,能将传统MUSIC谱的角度范围压缩至原来的一半,从而将DOA估计的计算量降至传统方法的50%,并具有与MUSIC算法相当的角度分辨率。展开更多
文摘传统DOA(direction of arrival)估计算法无法处理相干信号,因此提出一种基于重构噪声子空间的高精度DOA估计算法.该算法利用阵元接收数据的自协方差与互协方差信息构造成增广矩阵作为新的协方差矩阵,对该矩阵进行奇异值分解得到相应的噪声子空间和特征值矩阵.为了获得更精确的信号向量,重构一个由新特征值矩阵对应的特征向量所组成的噪声子空间.最后通过谱峰搜索得到DOA估计值.算法不影响对非相干信号估计的效果,并且比IMMUSIC(improved multiple signal classification)算法具有更高的估计精度,在低信噪比及信号入射间隔较小的情况下也有良好的准确性.仿真结果表明,提出的改进算法在低信噪比及低采样快拍数的条件下,能有效估计出相干信号的波达方向.
文摘为提高波达方向(Direction Of Arrival,DOA)的估计速度,该文基于子空间的正交性原理,利用噪声子空间及其共轭的交集进行奇异值分解(SVD)实现噪声子空间的降维,并基于降维噪声子空间与导向矢量及其共轭的双正交性提出一种2维阵列快速DOA估计算法。理论分析和仿真实验表明:该算法不受实际阵型的限制,能将传统MUSIC谱的角度范围压缩至原来的一半,从而将DOA估计的计算量降至传统方法的50%,并具有与MUSIC算法相当的角度分辨率。