针对目前快速内点法(fast interior point method,FIPM)无法处理多快拍情况下半正定规划(semi-definite programming,SDP)问题的缺陷,提出一种基于多快拍FIPM(multiple snapshots FIPM,M-FIPM)的无网格波达方向(direction of arrival,D...针对目前快速内点法(fast interior point method,FIPM)无法处理多快拍情况下半正定规划(semi-definite programming,SDP)问题的缺陷,提出一种基于多快拍FIPM(multiple snapshots FIPM,M-FIPM)的无网格波达方向(direction of arrival,DOA)估计算法。该算法首先对天线阵列接收多快拍数据的协方差矩阵进行特征值分解,然后利用特征值和特征向量的相应加权和来重新构建符合FIPM模型的单快拍观测向量,最后再通过FIPM获得SDP问题的最优解并以此建立Toeplitz矩阵,根据该矩阵的Vandermonde分解结果便可以估计出入射信源的DOA参数。M-FIPM算法不仅保留了现有FIPM算法运算复杂度低的特点,能够将SDP问题的维度由O(M^(2))降低为O(M),同时在新单快拍观测向量的构造过程中,由于舍弃了协方差矩阵小特征值所对应的部分,因此能够有效抑制噪声对于后续DOA参数恢复过程的影响,进一步提升算法的估计精度。仿真实验验证了M-FIPM在估计精度以及运算时间方面的优越性。展开更多
文章针对众多性能优良的超分辨DOA(Direction-Of-Arrival)估计算法大都是以预知信源数为前提、信源数估计不准可能会导致DOA估计失败这一问题,提出了一种基于协方差矩阵对角加载的超分辨DOA估计算法。该算法不需要预判信源个数和进行特...文章针对众多性能优良的超分辨DOA(Direction-Of-Arrival)估计算法大都是以预知信源数为前提、信源数估计不准可能会导致DOA估计失败这一问题,提出了一种基于协方差矩阵对角加载的超分辨DOA估计算法。该算法不需要预判信源个数和进行特征值分解,且通过对协方差矩阵进行对角加载,可以平滑小快拍数时噪声特征值分散程度,因此,该算法更适用于快拍数较少的情况。理论分析表明:该算法的统计估计性能接近于MUSIC(Multiple Signal Classification)算法。计算机仿真结果验证了该算法的鲁棒性和可行性。展开更多
文摘针对目前快速内点法(fast interior point method,FIPM)无法处理多快拍情况下半正定规划(semi-definite programming,SDP)问题的缺陷,提出一种基于多快拍FIPM(multiple snapshots FIPM,M-FIPM)的无网格波达方向(direction of arrival,DOA)估计算法。该算法首先对天线阵列接收多快拍数据的协方差矩阵进行特征值分解,然后利用特征值和特征向量的相应加权和来重新构建符合FIPM模型的单快拍观测向量,最后再通过FIPM获得SDP问题的最优解并以此建立Toeplitz矩阵,根据该矩阵的Vandermonde分解结果便可以估计出入射信源的DOA参数。M-FIPM算法不仅保留了现有FIPM算法运算复杂度低的特点,能够将SDP问题的维度由O(M^(2))降低为O(M),同时在新单快拍观测向量的构造过程中,由于舍弃了协方差矩阵小特征值所对应的部分,因此能够有效抑制噪声对于后续DOA参数恢复过程的影响,进一步提升算法的估计精度。仿真实验验证了M-FIPM在估计精度以及运算时间方面的优越性。
文摘文章针对众多性能优良的超分辨DOA(Direction-Of-Arrival)估计算法大都是以预知信源数为前提、信源数估计不准可能会导致DOA估计失败这一问题,提出了一种基于协方差矩阵对角加载的超分辨DOA估计算法。该算法不需要预判信源个数和进行特征值分解,且通过对协方差矩阵进行对角加载,可以平滑小快拍数时噪声特征值分散程度,因此,该算法更适用于快拍数较少的情况。理论分析表明:该算法的统计估计性能接近于MUSIC(Multiple Signal Classification)算法。计算机仿真结果验证了该算法的鲁棒性和可行性。