The Wind Energy Conversion System(WECS)based Doubly Fed Induction Generator(DFIG)has experienced a rapid development in the world,which leads to an increasing insertion of this source of energy in the electrical grids...The Wind Energy Conversion System(WECS)based Doubly Fed Induction Generator(DFIG)has experienced a rapid development in the world,which leads to an increasing insertion of this source of energy in the electrical grids.The sudden and temporary drop of voltage at the network can affect the operation of the DFIG;the voltage dips produce high peak currents on the stator and rotor circuits,without protection,the rotor side converter(RSC)will suffer also from over-current limit,consequently,the RSC may even be destroyed and the generator be damaged.In this paper a new Direct Power Control(DPC)method was developed,in order to control the stator powers and help the operation of the aero-generator during the faults grid;by injecting the reactive power into the network to contribute to the return of voltage,and set the active power to the optimum value to suppress the high peak currents.The DPC method was designed using the nonlinear Backstepping(BS)controller associated with the Lyapunov function to ensure the stability and robustness of the system.A comparison study was undertaken to verify the robustness and effectiveness of the DPC-BS to that of the classical vector control(VC)using Proportional-Integral(PI)correctors.All were simulated under the Simulink®software.展开更多
Virtual synchronous generators(VSGs)are widely introduced to the renewable power generation,the variablespeed pumped storage units,and so on,as a promising gridforming solution.It is noted that VSGs can provide virtua...Virtual synchronous generators(VSGs)are widely introduced to the renewable power generation,the variablespeed pumped storage units,and so on,as a promising gridforming solution.It is noted that VSGs can provide virtual inertia for frequency support,but the larger inertia would worsen the synchronization stability,referring to keeping synchronization with the grid during voltage dips.Thus,this paper presents a transient damping method of VSGs for enhancing the synchronization stability during voltage dips.It is revealed that the loss of synchronization(LOS)of VSGs always accompanies with the positive frequency deviation and the damping is the key factor to remove LOS when the equilibrium point exists.In order to enhance synchronization stability during voltage dips,the transient damping is proposed,which is generated by the frequency deviation in active power loop.Additionally,the proposed method can realize seamless switching between normal state and grid fault.Moreover,detailed control design for transient damping gain is given to ensure the synchronization stability under different inertia requirements during voltage dips.Finally,the experimental results are presented to validate the analysis and the effectiveness of the improved transient damping method.展开更多
This paper presents the development and performance capability of a comprehensive Low voltage ride through (LVRT) control scheme that makes use of both the DC chopper and the current limiting based on the required rea...This paper presents the development and performance capability of a comprehensive Low voltage ride through (LVRT) control scheme that makes use of both the DC chopper and the current limiting based on the required reactive power during fault time. The study is conducted on an 8.5 MW single stage PV power plant (PVPP) connected to the Rwandan grid. In the event of fault disturbance, this control scheme helps to overcome the problems of excessive DC-link voltage by fast activation of the DC chopper operation. At the same instance, AC current is limited to the maximum rating of the inverter as a function of the injected reactive current. This helps overcome AC-over- current that may possibly lead to damage or disconnection of the inverter. The control scheme also ensures voltage support and power balance through the injection of reactive current as per grid code requirements. Selected simulations using MATLAB are carried out in the events of different kinds of fault caused voltage dips. Results demonstrate the effectiveness of the proposed LVRT control scheme.展开更多
The area covered by this study is the county of Kakobola and its surroundings. Previous studies show that those related to the study of depths by the gravity method, using other techniques, are not always carried out ...The area covered by this study is the county of Kakobola and its surroundings. Previous studies show that those related to the study of depths by the gravity method, using other techniques, are not always carried out until now. The main goal of this article is the gravimetric characterization of our area by other approach. The interest is not only to map the lineaments and to know their dip, but also to estimate the depths of these different anomalies. The methods used for this study are the first total horizontal derivative (FTHDT), tilt angle (TA), analytical signal (AS) and horizontal gradient magnitude (HGM). The processing of the complete Bouguer anomalies (CBA) data was done mainly through software. Data analysis using the semi-finished body depth method shows depths ranging from 7.49 m to 224.6 m. Data analysis using the AS method shows values ranging from 41.7 mGal/m to 510 mGal/m. The fractures and/or geological contacts in our study area show dips ranging from -73.73° to 68.16° and North-South orientation according to the tilt angle method. The FTHDT shows several lineaments, a NE oriented fracture of Kakobola and low dip values which suggest a tabular structure of the subsurface in our study area. According to the HGM, the study area shows several preferential directions of fractures and/or geological contacts whose the most frequent directions are the NNE-SSW and WNW.展开更多
The paper mainly presents the design of beam-wave interaction of a C-band high-peakpower high-efficiency broadband klystron.The beam-wave interaction section is designed based on considerations of efficiency and bandw...The paper mainly presents the design of beam-wave interaction of a C-band high-peakpower high-efficiency broadband klystron.The beam-wave interaction section is designed based on considerations of efficiency and bandwidth synthetically.As a part of beam-wave interaction section,buncher section is simulated by Particle-In-Cell(PIC) code to observe the bunching process of electron beam to achieve high conversion efficiency of electron beam and RF field.When it comes to the other part,output circuit is designed as a three-section filter by an output cavity loaded with Chebyshev filter,and the cold test results are given.The beam-wave interaction is simulated by EGUN code and Arsenal-MSU code respectively.The simulated results indicated that,the existence of power dips in the operating bandwidth is verified by Arsenal-MSU code,comparing proper results by EGUN code.Then,the method that design parameters are not adjusted except parameters of buncher cavities to remove potential power dips is described.What is more,the simulated results of electron optics system are given by EGUN code and Arsenal-MSU code respectively.The further hot test results of klystron prove that the whole design of beam-wave interaction is effective.展开更多
岩体结构面产状研究是岩体结构面几何特性研究的一项重要内容,是"十大"结构面调查指标中最重要的一项指标。在水利水电工程涉及的岩体结构调查和研究中,结构面产状常采用象限角法(走向、倾向、倾角)表示。这与通用的结构面产...岩体结构面产状研究是岩体结构面几何特性研究的一项重要内容,是"十大"结构面调查指标中最重要的一项指标。在水利水电工程涉及的岩体结构调查和研究中,结构面产状常采用象限角法(走向、倾向、倾角)表示。这与通用的结构面产状统计分析进口软件DIPS所需输入的方位角法(倾向、倾角)表示的产状,在记录格式上存在习惯性差异。为消除差异对统计分析工作的影响,通过VBA功能开发自定义函数QTA(Quadrant angle To Azimuth angle),实现对EXCEL单元格产状数据的转换。同时,QTA具有错误识别和报错机制功能,极大地提高了结构面产状转换的正确率和统计分析工作的效率。展开更多
To investigate the interaction of dusty plasma with magnetized plasmas at divertor plasma simulator,radial profiles of plasma density(ne)and electron temperature were measured in terms of plasma discharge currents and...To investigate the interaction of dusty plasma with magnetized plasmas at divertor plasma simulator,radial profiles of plasma density(ne)and electron temperature were measured in terms of plasma discharge currents and magnetic flux intensity by using a fast scanning probes system with triple tips.Dusty plasma with dusts(a generation rate of 3μg s-1 and a size of 1–10μm)was produced via interactions between a high-power laser beam and a full tungsten target.As ne increases,the scale of the effects of dusty plasma injection on magnetized plasmas was decreased.Also,the duration of transient fluctuation was reduced.For numerical estimation of plasma density perturbation due to dusty plasma injection,the result was 10%at a core region of the magnetized plasma with ne of(2–5)×10^11 cm^-3 at steady state condition.展开更多
文摘The Wind Energy Conversion System(WECS)based Doubly Fed Induction Generator(DFIG)has experienced a rapid development in the world,which leads to an increasing insertion of this source of energy in the electrical grids.The sudden and temporary drop of voltage at the network can affect the operation of the DFIG;the voltage dips produce high peak currents on the stator and rotor circuits,without protection,the rotor side converter(RSC)will suffer also from over-current limit,consequently,the RSC may even be destroyed and the generator be damaged.In this paper a new Direct Power Control(DPC)method was developed,in order to control the stator powers and help the operation of the aero-generator during the faults grid;by injecting the reactive power into the network to contribute to the return of voltage,and set the active power to the optimum value to suppress the high peak currents.The DPC method was designed using the nonlinear Backstepping(BS)controller associated with the Lyapunov function to ensure the stability and robustness of the system.A comparison study was undertaken to verify the robustness and effectiveness of the DPC-BS to that of the classical vector control(VC)using Proportional-Integral(PI)correctors.All were simulated under the Simulink®software.
文摘Virtual synchronous generators(VSGs)are widely introduced to the renewable power generation,the variablespeed pumped storage units,and so on,as a promising gridforming solution.It is noted that VSGs can provide virtual inertia for frequency support,but the larger inertia would worsen the synchronization stability,referring to keeping synchronization with the grid during voltage dips.Thus,this paper presents a transient damping method of VSGs for enhancing the synchronization stability during voltage dips.It is revealed that the loss of synchronization(LOS)of VSGs always accompanies with the positive frequency deviation and the damping is the key factor to remove LOS when the equilibrium point exists.In order to enhance synchronization stability during voltage dips,the transient damping is proposed,which is generated by the frequency deviation in active power loop.Additionally,the proposed method can realize seamless switching between normal state and grid fault.Moreover,detailed control design for transient damping gain is given to ensure the synchronization stability under different inertia requirements during voltage dips.Finally,the experimental results are presented to validate the analysis and the effectiveness of the improved transient damping method.
文摘This paper presents the development and performance capability of a comprehensive Low voltage ride through (LVRT) control scheme that makes use of both the DC chopper and the current limiting based on the required reactive power during fault time. The study is conducted on an 8.5 MW single stage PV power plant (PVPP) connected to the Rwandan grid. In the event of fault disturbance, this control scheme helps to overcome the problems of excessive DC-link voltage by fast activation of the DC chopper operation. At the same instance, AC current is limited to the maximum rating of the inverter as a function of the injected reactive current. This helps overcome AC-over- current that may possibly lead to damage or disconnection of the inverter. The control scheme also ensures voltage support and power balance through the injection of reactive current as per grid code requirements. Selected simulations using MATLAB are carried out in the events of different kinds of fault caused voltage dips. Results demonstrate the effectiveness of the proposed LVRT control scheme.
文摘The area covered by this study is the county of Kakobola and its surroundings. Previous studies show that those related to the study of depths by the gravity method, using other techniques, are not always carried out until now. The main goal of this article is the gravimetric characterization of our area by other approach. The interest is not only to map the lineaments and to know their dip, but also to estimate the depths of these different anomalies. The methods used for this study are the first total horizontal derivative (FTHDT), tilt angle (TA), analytical signal (AS) and horizontal gradient magnitude (HGM). The processing of the complete Bouguer anomalies (CBA) data was done mainly through software. Data analysis using the semi-finished body depth method shows depths ranging from 7.49 m to 224.6 m. Data analysis using the AS method shows values ranging from 41.7 mGal/m to 510 mGal/m. The fractures and/or geological contacts in our study area show dips ranging from -73.73° to 68.16° and North-South orientation according to the tilt angle method. The FTHDT shows several lineaments, a NE oriented fracture of Kakobola and low dip values which suggest a tabular structure of the subsurface in our study area. According to the HGM, the study area shows several preferential directions of fractures and/or geological contacts whose the most frequent directions are the NNE-SSW and WNW.
文摘The paper mainly presents the design of beam-wave interaction of a C-band high-peakpower high-efficiency broadband klystron.The beam-wave interaction section is designed based on considerations of efficiency and bandwidth synthetically.As a part of beam-wave interaction section,buncher section is simulated by Particle-In-Cell(PIC) code to observe the bunching process of electron beam to achieve high conversion efficiency of electron beam and RF field.When it comes to the other part,output circuit is designed as a three-section filter by an output cavity loaded with Chebyshev filter,and the cold test results are given.The beam-wave interaction is simulated by EGUN code and Arsenal-MSU code respectively.The simulated results indicated that,the existence of power dips in the operating bandwidth is verified by Arsenal-MSU code,comparing proper results by EGUN code.Then,the method that design parameters are not adjusted except parameters of buncher cavities to remove potential power dips is described.What is more,the simulated results of electron optics system are given by EGUN code and Arsenal-MSU code respectively.The further hot test results of klystron prove that the whole design of beam-wave interaction is effective.
文摘岩体结构面产状研究是岩体结构面几何特性研究的一项重要内容,是"十大"结构面调查指标中最重要的一项指标。在水利水电工程涉及的岩体结构调查和研究中,结构面产状常采用象限角法(走向、倾向、倾角)表示。这与通用的结构面产状统计分析进口软件DIPS所需输入的方位角法(倾向、倾角)表示的产状,在记录格式上存在习惯性差异。为消除差异对统计分析工作的影响,通过VBA功能开发自定义函数QTA(Quadrant angle To Azimuth angle),实现对EXCEL单元格产状数据的转换。同时,QTA具有错误识别和报错机制功能,极大地提高了结构面产状转换的正确率和统计分析工作的效率。
基金National R&D Program through the Nation Research Foundation of Korea(NRF)funded by the Ministry of Education(2017R1D1A1B03033076)National R&D Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Science,ICT&Future Planning(2019M1A7A1A03088471).
文摘To investigate the interaction of dusty plasma with magnetized plasmas at divertor plasma simulator,radial profiles of plasma density(ne)and electron temperature were measured in terms of plasma discharge currents and magnetic flux intensity by using a fast scanning probes system with triple tips.Dusty plasma with dusts(a generation rate of 3μg s-1 and a size of 1–10μm)was produced via interactions between a high-power laser beam and a full tungsten target.As ne increases,the scale of the effects of dusty plasma injection on magnetized plasmas was decreased.Also,the duration of transient fluctuation was reduced.For numerical estimation of plasma density perturbation due to dusty plasma injection,the result was 10%at a core region of the magnetized plasma with ne of(2–5)×10^11 cm^-3 at steady state condition.