期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
基于改进的YOLOv5s的双目视觉车辆检测与测距方法研究 被引量:2
1
作者 陈冬冬 任晓明 +1 位作者 李登攀 陈坚 《光电子.激光》 CAS CSCD 北大核心 2024年第3期311-319,共9页
为了提升汽车辅助驾驶系统对前方车辆的检测效果,进一步获取精确的距离信息,本文提出一种改进的YOLOv5s的目标车辆检测算法,并用双目对前方车辆进行测距。以YOLOv5s(you only look once v5s, YOLOv5s)检测网络为基础,首先在网络中引入... 为了提升汽车辅助驾驶系统对前方车辆的检测效果,进一步获取精确的距离信息,本文提出一种改进的YOLOv5s的目标车辆检测算法,并用双目对前方车辆进行测距。以YOLOv5s(you only look once v5s, YOLOv5s)检测网络为基础,首先在网络中引入卷积注意力模块(convolutional block attention module, CBAM)有效提取检测目标的轮廓特征;其次将Neck中PANet网络替换为BiFPN提升特征的融合能力,使用DIoU优化损失函数,增强对车辆检测的准确性;采用SURF算法进行立体匹配,并对特征匹配点进行约束获得最优视差值,最后通过双目视觉测距原理求得前车距离信息。测试表明,在20 m的距离范围内,车辆识别率准确率为92.1%,提升了1.54%,测距平均误差率为2.75%。 展开更多
关键词 辅助驾驶 YOLOv5s 注意力机制 BiFPN结构 diou损失函数 双目视觉测距
原文传递
FPN-CenterNet安全帽佩戴检测算法 被引量:6
2
作者 赵江河 王海瑞 吴蕾 《计算机工程与应用》 CSCD 北大核心 2022年第14期114-120,共7页
安全帽作为施工场所工人的安全保障,佩戴与否影响着工人的生命安全。在佩戴检测方面引入深度学习可以高效地提醒工人佩戴安全帽。但由于施工图像中安全帽的图像过小,CenterNet表现得并不好。因此针对这个情况,提出了FPN-CenterNet框架;... 安全帽作为施工场所工人的安全保障,佩戴与否影响着工人的生命安全。在佩戴检测方面引入深度学习可以高效地提醒工人佩戴安全帽。但由于施工图像中安全帽的图像过小,CenterNet表现得并不好。因此针对这个情况,提出了FPN-CenterNet框架;使用ACNet非对称卷积核来对主干网络的特征提取进行增强;使用DIoU损失函数来优化边框预测的准确度。最终修改的算法相较于原始的CenterNet算法mAP提升了4.99个百分点,在GTXGeForce 1050的GPU上的FPS达到25.81。实验结果表明修改之后的算法在安全帽佩戴检测上有良好的准确性和效率。 展开更多
关键词 安全帽佩戴检测 特征金字塔 非对称卷积核 diou损失函数
下载PDF
基于改进YOLOv8n的煤矿带式输送异物检测研究
3
作者 李宗霖 王广祥 +1 位作者 张立亚 李明亮 《矿业安全与环保》 CAS 北大核心 2024年第4期41-48,共8页
在煤矿带式输送物料过程中,异物的出现可能会引发输送带撕裂或堵塞等安全风险。针对输送带输送物料中异物多样、人工巡检效率低、硬件限制等问题,提出一种基于改进YOLOv8n的轻量化煤矿带式输送异物检测算法:采用GhostNetV2网络对原CSPDa... 在煤矿带式输送物料过程中,异物的出现可能会引发输送带撕裂或堵塞等安全风险。针对输送带输送物料中异物多样、人工巡检效率低、硬件限制等问题,提出一种基于改进YOLOv8n的轻量化煤矿带式输送异物检测算法:采用GhostNetV2网络对原CSPDarkNet53主干网络进行轻量化改进,以减少模型的参数和计算量;整合全局平均池化和全局最大池化思想优化SPPF模块,关注煤矿恶劣环境影响下图像的底层信息;设计了headC2f_CA模块,融入通道注意力机制,以便能够更有效地捕捉不同尺度和位置的异物特征,强化特征信息表达;引入DIoU损失函数,精确反映锚框与预测框之间的相似度,提升模型检测精度。实验结果表明,改进后的模型平均精度均值达88.3%,相比于基线模型YOLOv8n,提升了0.8%,参数量减少了18.51%,计算量减小了20.73%,模型大小缩减了15.87%。该模型有效缓解了边缘设备的硬件限制,同时保障了煤矿安全监测的准确性。 展开更多
关键词 煤矿 带式输送机 输送带异物 部署轻量化 GhostNetV2 SPPF优化 headC2f_CA注意力模块 diou损失函数
下载PDF
基于无人机航拍的绝缘子掉串实时检测研究 被引量:4
4
作者 李登攀 任晓明 颜楠楠 《上海交通大学学报》 EI CAS CSCD 北大核心 2022年第8期994-1003,共10页
由无人机代替人工进行电力绝缘子巡检具有重要意义,针对无人机的上位机算力和存储资源有限的问题,提出一种适用于绝缘子掉串故障检测的实时目标检测改进算法.以YOLOv5s检测网络为基础,将颈部结构中路径聚合网络替换为双向特征金字塔网络... 由无人机代替人工进行电力绝缘子巡检具有重要意义,针对无人机的上位机算力和存储资源有限的问题,提出一种适用于绝缘子掉串故障检测的实时目标检测改进算法.以YOLOv5s检测网络为基础,将颈部结构中路径聚合网络替换为双向特征金字塔网络,以提升特征融合能力;使用DIoU优化损失函数,对模型进行γ系数的通道剪枝和微调,总体上提升检测网络的精度、速度和部署能力;在网络输出处进行图像增强以提升算法可用性.在特殊扩增的绝缘子故障数据集下测试,相较于原始的YOLOv5s算法,改进算法在精度平均值上提升了3.91%,速度提升了25.6%,模型体积下降了59.1%. 展开更多
关键词 无人机 绝缘子掉串 双向特征金字塔网络结构 γ系数剪枝微调 diou损失函数 图像增强
下载PDF
基于改进YOLOv5的工业安全帽检测
5
作者 刘斯逸 何青 《现代计算机》 2023年第21期1-8,共8页
YOLO系列算法是目前计算机视觉目标检测领域主流的算法模型,其中以YOLOv5为代表的算法往往具有更快的检测速度和更高的准确率。由于工业施工现场受到例如光照、遮挡等复杂因素的影响,现有的检测算法对于小目标的检测精度不佳,存在漏检... YOLO系列算法是目前计算机视觉目标检测领域主流的算法模型,其中以YOLOv5为代表的算法往往具有更快的检测速度和更高的准确率。由于工业施工现场受到例如光照、遮挡等复杂因素的影响,现有的检测算法对于小目标的检测精度不佳,存在漏检、错检等问题。鉴于此,提出一种改进的YOLOv5安全帽检测算法。算法的改进主要为两方面,一方面对YOLOv5的三个预测输出层分别加入三种不同的自注意力机制,对大、中、小三个预测输出层之前分别加入SKNet模块、CA模块、ECA模块用以增强模型对于中小目标检测的鲁棒性,加入通道和空间的特征信息使得模型在预测中小目标时专注于被检测目标,同时在每一个模块引入残差连接,提高训练速度,有效解决因为引入自注意力机制造成的梯度消失问题;另一方面改进原来预测边界框的损失函数,采用DIoU损失函数加快训练的速度,提高了检测精度。在开源的数据集上进行实验验证,实验结果显示改进后的YOLOv5模型对比于改进之前的mAP值提升了1.6%。 展开更多
关键词 YOLOv5 SKNet模块 CA模块 ECA模块 diou损失函数
下载PDF
基于改进YOLOv5的目标检测算法研究
6
作者 胡冠真 李宏滨 +1 位作者 吴彦昕 沈帅杰 《信息技术与信息化》 2023年第11期103-107,共5页
为提高道路目标检测精度,采用了基于YOLOv5网络模型的改进算法。其中,利用Mish激活函数来提高特征提取能力,引入CBAM注意力机制对特征信息进行增强,采用DIOU目标回归损失函数来直接最小化两个目标框的距离,从而提高收敛速度。实验结果表... 为提高道路目标检测精度,采用了基于YOLOv5网络模型的改进算法。其中,利用Mish激活函数来提高特征提取能力,引入CBAM注意力机制对特征信息进行增强,采用DIOU目标回归损失函数来直接最小化两个目标框的距离,从而提高收敛速度。实验结果表明,所提出的算法在公开的自动驾驶数据集KITTI上的表现非常出色,达到了91.1%的mAP和94.9%的检测精度,相比原始算法分别提高了3.1%和3.2%。此外,所提出的算法具有较好的检测速度(69帧/s)和实时性,相比一些主流的目标检测算法,具有一定的优越性。 展开更多
关键词 目标检测 YOLOv5 CBAM注意力机制 Mish激活函数 diou损失函数
下载PDF
基于改进YOLOv3算法的行人目标检测研究 被引量:1
7
作者 刘金涛 《软件导刊》 2022年第4期220-225,共6页
针对行人目标检测任务中目标检测速度慢及小目标难以检测的问题,提出一种融合CBAM注意力机制的YOLOv3多尺度目标检测模型。该算法首先以YOLOv3为基础网络进行特征提取,然后在YOLOv3的多尺度特征融合层新增一个两倍下采样特征图,用于补... 针对行人目标检测任务中目标检测速度慢及小目标难以检测的问题,提出一种融合CBAM注意力机制的YOLOv3多尺度目标检测模型。该算法首先以YOLOv3为基础网络进行特征提取,然后在YOLOv3的多尺度特征融合层新增一个两倍下采样特征图,用于补充小目标特征信息,最后在YOLOv3的各尺度特征图融合后加入卷积注意力模型(CBAM),以加强网络的特征表达能力。模型训练时使用DIOU损失函数代替较为主流的GIOU损失函数,并采用INRIA数据集进行实验。实验结果表明,改进后的YOLOv3目标检测模型精度和速度都有较大程度提升,检测精度最高提升了4.5%,检测速度提升了8帧/s,验证了该模型的可行性与有效性。 展开更多
关键词 行人目标检测 多尺度反馈 CBAM注意力机制 diou损失函数
下载PDF
基于深度学习的生姜种芽快速识别及其朝向判定 被引量:8
8
作者 侯加林 房立发 +2 位作者 吴彦强 李玉华 席芮 《农业工程学报》 EI CAS CSCD 北大核心 2021年第1期213-222,共10页
针对目前生姜机械化播种难以实现“种芽朝向一致”农艺要求的问题,该研究提出了一种基于深度学习的生姜种芽快速识别及其朝向判定的方法。首先,构建生姜数据集。其次,搭建YOLO v3网络进行种芽的识别,包括:使用Mosaic等在线数据增强方式... 针对目前生姜机械化播种难以实现“种芽朝向一致”农艺要求的问题,该研究提出了一种基于深度学习的生姜种芽快速识别及其朝向判定的方法。首先,构建生姜数据集。其次,搭建YOLO v3网络进行种芽的识别,包括:使用Mosaic等在线数据增强方式,增加图像的多样性,解决小数据集训练时泛化能力不足的问题;引入DIoU(Distance Intersection over Union)边框回归损失函数来提高种芽识别回归效果;使用基于IoU的K-means聚类方法,经线性尺度缩放得到9个符合种芽尺寸的先验框,减少了先验框带来的误差。最后进行壮芽的选取及其朝向的判定。测试集中的结果表明,该研究提出的生姜种芽识别网络,平均精度和精准率、召回率的加权调和平均值F1分别达到98.2%和94.9%,采用GPU硬件加速后对生姜种芽的检测速度可达112帧/s,比原有YOLO v3网络的平均精度和F1值分别提升1.5%和4.4%,实现了生姜种芽的快速识别及其朝向的判定,为生姜自动化精确播种提供了技术保证。 展开更多
关键词 图像识别 算法 卷积神经网络 生姜种芽 diou边框回归损失函数
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部