Imaging through diffusers presents a challenging problem with various digital image reconstruction solutions demonstrated to date using computers.Here,we present a computer-free,all-optical image reconstruction method...Imaging through diffusers presents a challenging problem with various digital image reconstruction solutions demonstrated to date using computers.Here,we present a computer-free,all-optical image reconstruction method to see through random diffusers at the speed of light.Using deep learning,a set of transmissive diffractive surfaces are trained to all-optically reconstruct images of arbitrary objects that are completely covered by unknown,random phase diffusers.After the training stage,which is a one-time effort,the resulting diffractive surfaces are fabricated and form a passive optical network that is physically positioned between the unknown object and the image plane to all-optically reconstruct the object pattern through an unknown,new phase diffuser.We experimentally demonstrated this concept using coherent THz illumination and all-optically reconstructed objects distorted by unknown,random diffusers,never used during training.Unlike digital methods,all-optical diffractive reconstructions do not require power except for the illumination light.This diffractive solution to see through diffusers can be extended to other wavelengths,and might fuel various applications in biomedical imaging,astronomy,atmospheric sciences,oceanography,security,robotics,autonomous vehicles,among many others.展开更多
Simulation of the mixing mechanism of submerged multiport diffusers used to discharge heated water from thermal-electric power plants and households into shallow receiving waters was described. The three-dimensional t...Simulation of the mixing mechanism of submerged multiport diffusers used to discharge heated water from thermal-electric power plants and households into shallow receiving waters was described. The three-dimensional turbulence model and hybrid finite analytic method were used to predict the behavior of near field for multiport buoyant jets in rivers. The predicted temperature dilution and velocity prove good by comparison with available laboratory measurements. An empirical formula for temperature dilution and velocity in near field for this kind of flow was given. The effect of parameters on the dilution behavior of multiple jets were also discussed.展开更多
Based on analysis of the relation between mean penetration depth and source-detector separation in a threelayer model with the method of Monte-Carlo simulation, an optimal source-detector separation is derived from th...Based on analysis of the relation between mean penetration depth and source-detector separation in a threelayer model with the method of Monte-Carlo simulation, an optimal source-detector separation is derived from the mean penetration depth referring to monitoring the change of chromophores concentration of the sandwiched layer. In order to verify the separation, we perform Monte-Carlo simulations with varied absorption coefficient of the sandwiched layer. All these diffuse reflectances are used to construct a calibration model with the method of partial least square (PLS). High correlation coefficients and low root mean square error of prediction (RMSEP) at the optimal separation have confirmed correctness of the selection. This technique is expected to show light on noninvasive diagnosis of near-infrared spectroscopy.展开更多
The k-Ε turbulence model was used to establish the mathematical model of two-dimensional line buoyant jets in crossflow. The hybrid finite analytic method and staggered grid were applied to the calculation of line bu...The k-Ε turbulence model was used to establish the mathematical model of two-dimensional line buoyant jets in crossflow. The hybrid finite analytic method and staggered grid were applied to the calculation of line buoyant jets. Only receiving water with uniform density is considered. The distribution of velocity, temperature and turbulent kinetic energy were analyzed, and the variation of the maximum velocity was given. The effect of velocity ratio and densimetric Froude number on line buoyant jets was considered.展开更多
Free-space optical information transfer through diffusive media is critical in many applications, such as biomedical devices and optical communication, but remains challenging due to random, unknown perturbations in t...Free-space optical information transfer through diffusive media is critical in many applications, such as biomedical devices and optical communication, but remains challenging due to random, unknown perturbations in the optical path. We demonstrate an optical diffractive decoder with electronic encoding to accurately transfer the optical information of interest, corresponding to, e.g., any arbitrary input object or message, through unknown random phase diffusers along the optical path. This hybrid electronic-optical model, trained using supervised learning, comprises a convolutional neural network-based electronic encoder and successive passive diffractive layers that are jointly optimized. After their joint training using deep learning,our hybrid model can transfer optical information through unknown phase diffusers, demonstrating generalization to new random diffusers never seen before. The resulting electronic-encoder and optical-decoder model was experimentally validated using a 3D-printed diffractive network that axially spans <70λ, whereλ = 0.75 mm is the illumination wavelength in the terahertz spectrum, carrying the desired optical information through random unknown diffusers. The presented framework can be physically scaled to operate at different parts of the electromagnetic spectrum, without retraining its components, and would offer low-power and compact solutions for optical information transfer in free space through unknown random diffusive media.展开更多
The even and transparent nanometer TiO2 thin films named DegussaP25 as photocatalysis deposited on the surface of diffusers of solar light pipe were prepared by sol-gel processing.The rugged side of the diffusers of s...The even and transparent nanometer TiO2 thin films named DegussaP25 as photocatalysis deposited on the surface of diffusers of solar light pipe were prepared by sol-gel processing.The rugged side of the diffusers of solar light pipe was coated evenly with DegussaP25 solution for the quality of 1.75 g.The experiments had showed that when the coated side was away from the sun the lighting degree may be reduced compared with that facing the sun.The average reduction was only 3.03%,which would not have a significant impact on lighting.Diffusers are important parts of a light pipe which can diffuse light evenly to the place needed to be illuminated.The experiments showed that in a sunny summer day under the direct sunlight,the solar light pipe combined with photocatalysis could reduce the formaldehyde volume fraction in a box of 0.1 m3 from 1.0×10-6 to 0.16×10-6.After 1 h of photodegradation the formaldehyde volume changed from 1.0×10-6 down to 0.1×10-6 with faster and more complete degradation of formaldehyde.The rate of degradation under cloudy and partly cloudy conditions was slower than that under sunny conditions.It was slower in winter than in summer under sunny conditions.The experimental results also showed that the performance of photocatalysis combined with diffusers of light pipe had better effect in a small space.The performance in large space,such as open space,will be the next work in the future,which will be a great challenge.展开更多
The main objective of this work is to obtain the calculated ratio of efflux processes for liquids, vapors, gases on the basis of the developed mathematical model, which allows to determine the characteristics of the c...The main objective of this work is to obtain the calculated ratio of efflux processes for liquids, vapors, gases on the basis of the developed mathematical model, which allows to determine the characteristics of the channel profiles nozzles and diffusers, to solve a number of subsequent applications for analysis modes. On the basis of the calculated ratios are equations of the first law of thermodynamics for the flow of liquids and gases. The obtained calculated ratios are extended for the case of the efflux of compressible liquids, vapors and gases and as a special case, for incompressible liquids. The characteristics of the critical efflux regime liquids, which allows to determine the linear and the mass efflux rate of the critical regime and the calculated characteristics of the channel profiles nozzles and diffusers, Laval nozzles for different modes of operation are obtained.展开更多
Diffractive diffusers (phase gratings) are routinely used for homogenizing and beam shaping for laser beam applications. Another use for diffractive diffusers is in the reduction of speckle for pico-projection systems...Diffractive diffusers (phase gratings) are routinely used for homogenizing and beam shaping for laser beam applications. Another use for diffractive diffusers is in the reduction of speckle for pico-projection systems. While diffusers are unable to completely eliminate speckle they can be utilized to decrease the resultant contrast to provide a more visually acceptable image. Research has been conducted to quantify and measure the diffusers overall ability in speckle reduction. A theoretical Fourier optics model is used to provide the diffuser’s stationary and in-motion performance in terms of the resultant contrast level. Contrast measurements of two diffractive diffusers are calculated theoretically and compared with experimental results. Having a working theoretical model to accurately predict the performance of the diffractive diffuser allows for the verification of new diffuser designs specifically for pico-projection system applications.展开更多
As a variable-condition adjustment technology,the adjustable vaned diffusers(AVDs)can expand the working flow range of the compressor in the compressed air energy storage(CAES)system and improve its aerodynamic perfor...As a variable-condition adjustment technology,the adjustable vaned diffusers(AVDs)can expand the working flow range of the compressor in the compressed air energy storage(CAES)system and improve its aerodynamic performance.In order to investigate the regulatory mechanism of AVDs and capture the details of vane loading distribution for the diffuser design optimization,additively manufactured AVDs for testing in a centrifugal compressor closed test facility are designed and implemented.Firstly,the regulation law of AVDs was summarized by numerical analysis and experimental support,and the corresponding vane loading data was extracted for the distribution law.Then,based on the distribution characteristics,3D diffuser models were designed suitably for the adjustable components.Then,the laser selective melting(SLM)technology and die steel material 1.2709 were selected for metal printing according to the actual operating environment.Finally,performance testing and accuracy detection were performed on the finished test pieces,almost all inlet hole’s deviations were within the 0.3 mm tolerance.The research results indicated that additive manufacturing can significantly improve the accessibility of the internal flow channels of the diffuser,and derive the load of the blade on the pressure surface and suction surface in detail,also provide adjustable functions for variable operating conditions.It can not only break through the traditional processing bottleneck of the complicated internal flow channels of AVDs but also improve the design matching degree with adjustable components;simultaneously,it ensures high performance with high precision and effectively shortens the long lead time.展开更多
基金The authors acknowledge the U.S.National Science Foundation and Fujikura.
文摘Imaging through diffusers presents a challenging problem with various digital image reconstruction solutions demonstrated to date using computers.Here,we present a computer-free,all-optical image reconstruction method to see through random diffusers at the speed of light.Using deep learning,a set of transmissive diffractive surfaces are trained to all-optically reconstruct images of arbitrary objects that are completely covered by unknown,random phase diffusers.After the training stage,which is a one-time effort,the resulting diffractive surfaces are fabricated and form a passive optical network that is physically positioned between the unknown object and the image plane to all-optically reconstruct the object pattern through an unknown,new phase diffuser.We experimentally demonstrated this concept using coherent THz illumination and all-optically reconstructed objects distorted by unknown,random diffusers,never used during training.Unlike digital methods,all-optical diffractive reconstructions do not require power except for the illumination light.This diffractive solution to see through diffusers can be extended to other wavelengths,and might fuel various applications in biomedical imaging,astronomy,atmospheric sciences,oceanography,security,robotics,autonomous vehicles,among many others.
文摘Simulation of the mixing mechanism of submerged multiport diffusers used to discharge heated water from thermal-electric power plants and households into shallow receiving waters was described. The three-dimensional turbulence model and hybrid finite analytic method were used to predict the behavior of near field for multiport buoyant jets in rivers. The predicted temperature dilution and velocity prove good by comparison with available laboratory measurements. An empirical formula for temperature dilution and velocity in near field for this kind of flow was given. The effect of parameters on the dilution behavior of multiple jets were also discussed.
基金This work was supported by the Tenth Five Years Plan of China (No. 2004BA706B12) the Natural Science Key Foundation of Tianjin (No. 023800411).
文摘Based on analysis of the relation between mean penetration depth and source-detector separation in a threelayer model with the method of Monte-Carlo simulation, an optimal source-detector separation is derived from the mean penetration depth referring to monitoring the change of chromophores concentration of the sandwiched layer. In order to verify the separation, we perform Monte-Carlo simulations with varied absorption coefficient of the sandwiched layer. All these diffuse reflectances are used to construct a calibration model with the method of partial least square (PLS). High correlation coefficients and low root mean square error of prediction (RMSEP) at the optimal separation have confirmed correctness of the selection. This technique is expected to show light on noninvasive diagnosis of near-infrared spectroscopy.
文摘The k-Ε turbulence model was used to establish the mathematical model of two-dimensional line buoyant jets in crossflow. The hybrid finite analytic method and staggered grid were applied to the calculation of line buoyant jets. Only receiving water with uniform density is considered. The distribution of velocity, temperature and turbulent kinetic energy were analyzed, and the variation of the maximum velocity was given. The effect of velocity ratio and densimetric Froude number on line buoyant jets was considered.
基金supported by the U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award No. DE-SC0023088
文摘Free-space optical information transfer through diffusive media is critical in many applications, such as biomedical devices and optical communication, but remains challenging due to random, unknown perturbations in the optical path. We demonstrate an optical diffractive decoder with electronic encoding to accurately transfer the optical information of interest, corresponding to, e.g., any arbitrary input object or message, through unknown random phase diffusers along the optical path. This hybrid electronic-optical model, trained using supervised learning, comprises a convolutional neural network-based electronic encoder and successive passive diffractive layers that are jointly optimized. After their joint training using deep learning,our hybrid model can transfer optical information through unknown phase diffusers, demonstrating generalization to new random diffusers never seen before. The resulting electronic-encoder and optical-decoder model was experimentally validated using a 3D-printed diffractive network that axially spans <70λ, whereλ = 0.75 mm is the illumination wavelength in the terahertz spectrum, carrying the desired optical information through random unknown diffusers. The presented framework can be physically scaled to operate at different parts of the electromagnetic spectrum, without retraining its components, and would offer low-power and compact solutions for optical information transfer in free space through unknown random diffusive media.
基金supported by the National Natural Science Foundation of China (Grant No.50476036)
文摘The even and transparent nanometer TiO2 thin films named DegussaP25 as photocatalysis deposited on the surface of diffusers of solar light pipe were prepared by sol-gel processing.The rugged side of the diffusers of solar light pipe was coated evenly with DegussaP25 solution for the quality of 1.75 g.The experiments had showed that when the coated side was away from the sun the lighting degree may be reduced compared with that facing the sun.The average reduction was only 3.03%,which would not have a significant impact on lighting.Diffusers are important parts of a light pipe which can diffuse light evenly to the place needed to be illuminated.The experiments showed that in a sunny summer day under the direct sunlight,the solar light pipe combined with photocatalysis could reduce the formaldehyde volume fraction in a box of 0.1 m3 from 1.0×10-6 to 0.16×10-6.After 1 h of photodegradation the formaldehyde volume changed from 1.0×10-6 down to 0.1×10-6 with faster and more complete degradation of formaldehyde.The rate of degradation under cloudy and partly cloudy conditions was slower than that under sunny conditions.It was slower in winter than in summer under sunny conditions.The experimental results also showed that the performance of photocatalysis combined with diffusers of light pipe had better effect in a small space.The performance in large space,such as open space,will be the next work in the future,which will be a great challenge.
文摘The main objective of this work is to obtain the calculated ratio of efflux processes for liquids, vapors, gases on the basis of the developed mathematical model, which allows to determine the characteristics of the channel profiles nozzles and diffusers, to solve a number of subsequent applications for analysis modes. On the basis of the calculated ratios are equations of the first law of thermodynamics for the flow of liquids and gases. The obtained calculated ratios are extended for the case of the efflux of compressible liquids, vapors and gases and as a special case, for incompressible liquids. The characteristics of the critical efflux regime liquids, which allows to determine the linear and the mass efflux rate of the critical regime and the calculated characteristics of the channel profiles nozzles and diffusers, Laval nozzles for different modes of operation are obtained.
文摘Diffractive diffusers (phase gratings) are routinely used for homogenizing and beam shaping for laser beam applications. Another use for diffractive diffusers is in the reduction of speckle for pico-projection systems. While diffusers are unable to completely eliminate speckle they can be utilized to decrease the resultant contrast to provide a more visually acceptable image. Research has been conducted to quantify and measure the diffusers overall ability in speckle reduction. A theoretical Fourier optics model is used to provide the diffuser’s stationary and in-motion performance in terms of the resultant contrast level. Contrast measurements of two diffractive diffusers are calculated theoretically and compared with experimental results. Having a working theoretical model to accurately predict the performance of the diffractive diffuser allows for the verification of new diffuser designs specifically for pico-projection system applications.
基金the support provided by the National Key R&D Plan (2017YFB0903604)the National Science Fund for Distinguished Young Scholars (51925604)+1 种基金the International Partnership Program, Bureau of International Cooperation of Chinese Academy of Sciences (182211KYSB20170029)the Guizhou Province Large Scale Physical Energy Storage Technology Research and Development Platform ([2019]4011)
文摘As a variable-condition adjustment technology,the adjustable vaned diffusers(AVDs)can expand the working flow range of the compressor in the compressed air energy storage(CAES)system and improve its aerodynamic performance.In order to investigate the regulatory mechanism of AVDs and capture the details of vane loading distribution for the diffuser design optimization,additively manufactured AVDs for testing in a centrifugal compressor closed test facility are designed and implemented.Firstly,the regulation law of AVDs was summarized by numerical analysis and experimental support,and the corresponding vane loading data was extracted for the distribution law.Then,based on the distribution characteristics,3D diffuser models were designed suitably for the adjustable components.Then,the laser selective melting(SLM)technology and die steel material 1.2709 were selected for metal printing according to the actual operating environment.Finally,performance testing and accuracy detection were performed on the finished test pieces,almost all inlet hole’s deviations were within the 0.3 mm tolerance.The research results indicated that additive manufacturing can significantly improve the accessibility of the internal flow channels of the diffuser,and derive the load of the blade on the pressure surface and suction surface in detail,also provide adjustable functions for variable operating conditions.It can not only break through the traditional processing bottleneck of the complicated internal flow channels of AVDs but also improve the design matching degree with adjustable components;simultaneously,it ensures high performance with high precision and effectively shortens the long lead time.