Bladder cancer is one of the concerning malignancies worldwide,which is lacking effective targeted therapy.Gene therapy is a potential approach for bladder cancer treatment.While,a safe and effective targeted gene del...Bladder cancer is one of the concerning malignancies worldwide,which is lacking effective targeted therapy.Gene therapy is a potential approach for bladder cancer treatment.While,a safe and effective targeted gene delivery system is urgently needed for prompting the bladder cancer treatment in vivo.In this study,we confirmed that the bladder cancer had CD44 overexpression and small interfering RNAs(siRNA)with high interfere to Bcl2 oncogene were designed and screened.Then hyaluronic acid dialdehyde(HAD)was prepared in an ethanol-water mixture and covalently conjugated to the chitosan nanoparticles(CS-HAD NPs)to achieve CD44 targeted siRNA delivery.The in vitro and in vivo evaluations indicated that the siRNA-loaded CS-HAD NPs(siRNA@CS-HAD NPs)were approximately 100 nm in size,with improved stability,high siRNA encapsulation efficiency and low cytotoxicity.CS-HAD NPs could target to CD44 receptor and deliver the therapeutic siRNA into T24 bladder cancer cells through a ligand-receptor-mediated targeting mechanism and had a specific accumulation capacity in vivo to interfere the targeted oncogene Bcl2 in bladder cancer.Overall,a CD44 targeted gene delivery system based on natural macromolecules was developed for effective bladder cancer treatment,which could be more conducive to clinical application due to its simple preparation and high biological safety.展开更多
The syntheses of 4H-benzopyran derivatives were investigated using dialdehyde as a key starting material. The reaction proceeds under microwave irradiation in good yield (87%—95%) with short reaction time (5—8 min),...The syntheses of 4H-benzopyran derivatives were investigated using dialdehyde as a key starting material. The reaction proceeds under microwave irradiation in good yield (87%—95%) with short reaction time (5—8 min), therefore providing a rapid and efficient method of synthesizing a variety of compounds containing two 4H-benzopyran units.展开更多
[Objective] The paper aimed at researching lectins in muscles of Varicorhinus macrolepis and providing scientific basis for researching the adaptation mechanism and immune response of V.macrolepis to environment,which...[Objective] The paper aimed at researching lectins in muscles of Varicorhinus macrolepis and providing scientific basis for researching the adaptation mechanism and immune response of V.macrolepis to environment,which were advantageous for the protection and reproduction of V.macrolepis.[Method] V.macrolepis was used as test materials for the hemagglutination test by dialdehyde fixation to prove the existence of lectins in muscle crude homogenate of Varicorhinus macrolepis and study the physical and chemical characters.[Result] Lectins in muscle crude homogenate of V.macrolepis had shown hemagglutination effects on erythrocytes of six types of animals and had the maximum hemagglutination activity against rabbit erythrocytes,which belonged to the S-type lectins with optimal pH ranged from 4 to 8 and optimal temperature at 60 ℃.Results from the saccharide inhibition test had indicated that the sucrose was the only kind of saccharide which had inhibited the hemagglutination,suggesting that sucrose had played an important role in the process of recognition and aggregation of lectins.[Conclusion] It had been speculated that the optimal pH ranges for thermal sensitivity and hemagglutination activity of lectins in different types of aquatic organisms were similar.展开更多
Dialdehyde sodium alginate(DSA)is an alternative chrome-free tanning material for fur production.To obtain satisfactory resultant fur and provide suggestions for the usage of DSA in fur making,the general properties o...Dialdehyde sodium alginate(DSA)is an alternative chrome-free tanning material for fur production.To obtain satisfactory resultant fur and provide suggestions for the usage of DSA in fur making,the general properties of DSA tanned sheep fur were systematically investigated.The tanning mechanism of DSA was analyzed and it was verified that DSA was mainly combined with collagen fiber by forming Schiff base covalent bonds while supplemented by a small number of hydrogen bonds and ionic bonds.Due to the acid sensitivity of Schiff base structure,DSA tanned fur had poor resistance to acid rinsing but had excellent resistance to washing and good fatliquoring performance.Also,it had good resistances to yellowing and reductant.After being retanned by chrome tanning agent,the fur was capable of enduring a high-temperature dyeing process(68°C for 8 h).Overall,DSA tanned sheep fur had favorable properties under appropriate post-tanning processing conditions to manufacture light-colored or dark-colored fur products with desirable physical properties.展开更多
Novel catalytic systems for the Rh‐catalyzed hydroformylation of dicyclopentadiene have been developed using tris‐H8‐binaphthyl monophosphite as ligands containing different ester substituents at the 2’‐binaphthy...Novel catalytic systems for the Rh‐catalyzed hydroformylation of dicyclopentadiene have been developed using tris‐H8‐binaphthyl monophosphite as ligands containing different ester substituents at the 2’‐binaphthyl position(OCOMe,OCOPh,OCOAdamantyl and OCOPhCl).The catalysts exhibited high activity(S/C=4000,TON=3286)with good to excellent selectivity towards dialdehydes.Remarkably,the Rh(I)complex bearing the ligands with chlorophenyl ester substituents led to 99.9%conversion and 98.7%selectivity for dialdehydes under relatively mild conditions(6 MPa,120°C).展开更多
Cell-laden cardiac patches have recently been emerging to renew cellular sources for myocardial infarction(MI,commonly know as a heart attack)repair.However,the fabrication of cell-laden patches with porous structure ...Cell-laden cardiac patches have recently been emerging to renew cellular sources for myocardial infarction(MI,commonly know as a heart attack)repair.However,the fabrication of cell-laden patches with porous structure remains challenging due to the limitations of currently available hydrogels and existing processing techniques.The present study utilized a bioprinting technique to fabricate hydrogel patches and characterize them in terms of printability,mechanical and biological properties.Cell-laden hydrogel(or bio-ink)was formulated from alginate dialdehyde(ADA)and gelatin(GEL)to improve the printability,degradability as well as bioactivity.Five groups of hydrogel compositions were designed to investigate the influence of the oxidation degree of ADA and hydrogels concentration on the properties of printed scaffolds.ADA-GEL hydrogels have generally shown favorable for living cells(EA.hy926 cells and hybrid human umbilical vein endothelial cell line).The hydrogel with an oxidation degree of 10%and a concentration ratio of 70/30(or 10%ADA70-GEL30)demonstrated the best printability among the groups examined.Formulated hydrogels were also bioprinted with the living cells(EA.hy926),and the scaffolds printed were then subject to the cell culture for 7 days.Our results illustrate that the scaffolds bioprinted from 10%ADA70–GEL30 hydrogels had the best homogenous cell distribution and also the highest cell viability.Taken together,in the present study we synthesized a newly formulated bio-ink from ADA and GEL and for the fist time,used them to bioprint cardiac patches,which have the potential to be used in MI repair.展开更多
DIALDEHYDES are important chemical industrial materials, which are widely used in textile,medicine, dye, binder, coating and so on. The traditional method for preparing dialdehydes is the catalytic oxidation of glycol...DIALDEHYDES are important chemical industrial materials, which are widely used in textile,medicine, dye, binder, coating and so on. The traditional method for preparing dialdehydes is the catalytic oxidation of glycol. We have reported the reduction ring-opening reaction of inndazoline by NaBH<sub>4</sub>.In this note, the reduction of imidazoline by sodium and ethanol is studied. A new synthetic method for the preparation of dialdehydes from dicarboxylic acids展开更多
Two title compounds, 4,4?diformyl-diphenoxyethane (compound 1, C16H14O4) and 4,4?4创-triformyl-triphenoxytriethylamine (compound 2, C27H27NO6), were synthesized by condensation of 4-hydroxybenzaldehyde with 1,2-dichlo...Two title compounds, 4,4?diformyl-diphenoxyethane (compound 1, C16H14O4) and 4,4?4创-triformyl-triphenoxytriethylamine (compound 2, C27H27NO6), were synthesized by condensation of 4-hydroxybenzaldehyde with 1,2-dichloroethane and tris(2-chloroethyl)amine, respectively in dimethyl formamide in the presence of anhydrous potassium carbonate. The crystal data are: monoclinic, P21/c, a = 7.571(2), b = 12.608(3), c = 7.357(2) ? b = 105.823(6)? V = 675.7(2) 3, Mr = 270.3, Z = 2, Dc = 1.328 g/cm3, F(000) = 284, m(MoKa) = 0.096 mm-1, R = 0.0537 and wR = 0.2189 for compound 1; and monoclinic, P21/n, a = 11.7162(6), b = 9.0042(6), c = 22.908(2) ? b = 99.505(1)? V = 2383.5(3) ?, Mr = 461.50, Z = 4, Dc = 1.286 g/cm3, F(000)= 976, m(MoKa) = 0.091 mm-1, R = 0.0464 and wR = 0.1462 for compound 2. The molecule of compound 1 (dialdehyde) is located at the crystallographic inversion center nearby the midpoint of C(8)C(8A) single bond. The three chains in the molecule of compound 2 (trialdehyde) are of non-crystallographic pseudo-C3 symmetry, and each of them is quite planar.展开更多
The adsorption of urea nitrogen onto chitosan coated dialdehyde cellulose (CDAC) under catalysis of immobilized urease in gelatin membrane (IE) was studied in batch system. The pseudo first-order and second-order kine...The adsorption of urea nitrogen onto chitosan coated dialdehyde cellulose (CDAC) under catalysis of immobilized urease in gelatin membrane (IE) was studied in batch system. The pseudo first-order and second-order kinetic models were used to describe the kinetic data, and the rate constants were evaluated. The experimental data fitted well to the second-order kinetic model.展开更多
Eight new Schiff bases of 5-nitro and 5-bromo-substituted 1,10-phenanthroline-2,9-dicarboxaldehydes with sulfur-containing amines, thiosemicarbazide, S-alkyl/aryl dithiocarbazates and 2-mercaptoaniline have been synth...Eight new Schiff bases of 5-nitro and 5-bromo-substituted 1,10-phenanthroline-2,9-dicarboxaldehydes with sulfur-containing amines, thiosemicarbazide, S-alkyl/aryl dithiocarbazates and 2-mercaptoaniline have been synthesized and characterized by a variety of spectroscopic methods. The condensation reactions of the dialdehydes with the amines were carried out both in the presence and absence of conc. sulfuric acid. A significant increase in yield of the Schiff bases was observed when the reactions were carried out in the presence of sulfuric acid.展开更多
In this study investigation of influence of hybrid nanosilica-polyethylene glycols materials (molecular weight 1500, 6000 and 15000), prepared by sol-gel synthesis, on lipid peroxidation and antioxidant activity of hu...In this study investigation of influence of hybrid nanosilica-polyethylene glycols materials (molecular weight 1500, 6000 and 15000), prepared by sol-gel synthesis, on lipid peroxidation and antioxidant activity of human serum in vitro was performed. Methods included chemiluminescence analysis and quantitative malonic dialdehyde estimation. It was revealed that nanosilica-PEG materials with different molecular weight had certain biological activity. Powders of SiO2-PEG 1500 and SiO2-PEG 6000 manifest prooxidant effects, whereas mesoporous (calcine) powders produced antioxidant effects in blood serum in vitro.展开更多
Hydrogels with precisely designed structures represent promising materials with a broad application spectrum, such as for sensor, tissue engineering and biomimetic technology. However, with highly reactive compounds, ...Hydrogels with precisely designed structures represent promising materials with a broad application spectrum, such as for sensor, tissue engineering and biomimetic technology. However, with highly reactive compounds, the preparation of hydrogels still needs an efficient approach for desired distribution of each component within hydrogels. In addition, a method for in situ preparation of gradient hydrogels is still lacking. Herein, we report the formation ofhydrogels with either uniform or gradient internal structures via a novel, simple but very efficient method by aerating ammonia gas (NH3 gas) into the solution of dialdehyde cellulose (DAC) and a diamine. As-prepared hydrogels exhibited uniform microscopic and chemical structure or gradient distribution Of functional groups. Due to lots of aldehyde groups on DAC chains, functional hydrogels can be prepared by using diverse diamines. For instance, hydrogels prepared by using 1,6-hexanediamine as a cross-linker were responsive to pH values. Moreover, this controllable process of aerating NH3 gas allows the in situ formation of gradient hydrogels; for instance, by using cyanamide as a reaction counterpart, gradient hydrogels with gradient distributions of cyanide groups were prepared.展开更多
Schiff bases are known to possess anticancer, antibacterial, antifungal, antitubercular, anti-inflammatory, antimicrobial and antimalarial properties. In this paper antibacterial studies against variety of plants and ...Schiff bases are known to possess anticancer, antibacterial, antifungal, antitubercular, anti-inflammatory, antimicrobial and antimalarial properties. In this paper antibacterial studies against variety of plants and human pathogenic bacteria with eight newly synthesized Schiff bases and several intermediate silyl compounds have been reported. The antibacterial activities of the synthesized compounds were primarily determined by paper disc diffusion method. The minimum inhibitory concentration (MIC) of each compound was also determined by tube dilution process. Seven different human pathogenic bacteria and eighteen different plant pathogenic bacteria were used for the antibacterial activity studies. While all synthesized compounds have shown significant antibacterial activity, one intermediate silyl compound has shown remarkably high antibacterial property. 5-substituted derivatives have shown relatively higher activity than non-substituted compounds. Polar substituent which increases hydrophilicity may have a positive impact on the antibacterial property.展开更多
基金This study was financially supported by the National Natural Science Foundation of China(81772713,81472411,81401899,81372752)Taishan Scholar Program of Shandong Province(tsqn20161077)+4 种基金Key Research and Development Program of Shandong Province(2018GSF118197)China Postdoctoral Science Foundation(2017M622144)Qingdao Postdoctoral Application Research Project.Prof.Zhang acknowledged the support from Academy of Finland(Grant no.328933)Sigrid Juselius Foundation(Grant no.28002247K1)We thank Dr.Chang Liu fromÅbo Akademi University for giving some advice to analyze the TGA data,and Ms.Qian Wen from Biomedical Center of Qingdao University for her guidance and support of in vivo fluorescence imaging.
文摘Bladder cancer is one of the concerning malignancies worldwide,which is lacking effective targeted therapy.Gene therapy is a potential approach for bladder cancer treatment.While,a safe and effective targeted gene delivery system is urgently needed for prompting the bladder cancer treatment in vivo.In this study,we confirmed that the bladder cancer had CD44 overexpression and small interfering RNAs(siRNA)with high interfere to Bcl2 oncogene were designed and screened.Then hyaluronic acid dialdehyde(HAD)was prepared in an ethanol-water mixture and covalently conjugated to the chitosan nanoparticles(CS-HAD NPs)to achieve CD44 targeted siRNA delivery.The in vitro and in vivo evaluations indicated that the siRNA-loaded CS-HAD NPs(siRNA@CS-HAD NPs)were approximately 100 nm in size,with improved stability,high siRNA encapsulation efficiency and low cytotoxicity.CS-HAD NPs could target to CD44 receptor and deliver the therapeutic siRNA into T24 bladder cancer cells through a ligand-receptor-mediated targeting mechanism and had a specific accumulation capacity in vivo to interfere the targeted oncogene Bcl2 in bladder cancer.Overall,a CD44 targeted gene delivery system based on natural macromolecules was developed for effective bladder cancer treatment,which could be more conducive to clinical application due to its simple preparation and high biological safety.
基金Project supported by the Natural Science Foundation of China (No. 20372057) the Natural Science Foundation of Jiangsu Province (No. BK2001142) and the Natural Science Foundation of Jiangsu Education Department (No. 01KJB150008) the key Laboratory of
文摘The syntheses of 4H-benzopyran derivatives were investigated using dialdehyde as a key starting material. The reaction proceeds under microwave irradiation in good yield (87%—95%) with short reaction time (5—8 min), therefore providing a rapid and efficient method of synthesizing a variety of compounds containing two 4H-benzopyran units.
基金Supported by National Natural Science Foundation of China(3070007131172074)National Natural Science Foundation of Shandong Province(ZR2010CL002)~~
文摘[Objective] The paper aimed at researching lectins in muscles of Varicorhinus macrolepis and providing scientific basis for researching the adaptation mechanism and immune response of V.macrolepis to environment,which were advantageous for the protection and reproduction of V.macrolepis.[Method] V.macrolepis was used as test materials for the hemagglutination test by dialdehyde fixation to prove the existence of lectins in muscle crude homogenate of Varicorhinus macrolepis and study the physical and chemical characters.[Result] Lectins in muscle crude homogenate of V.macrolepis had shown hemagglutination effects on erythrocytes of six types of animals and had the maximum hemagglutination activity against rabbit erythrocytes,which belonged to the S-type lectins with optimal pH ranged from 4 to 8 and optimal temperature at 60 ℃.Results from the saccharide inhibition test had indicated that the sucrose was the only kind of saccharide which had inhibited the hemagglutination,suggesting that sucrose had played an important role in the process of recognition and aggregation of lectins.[Conclusion] It had been speculated that the optimal pH ranges for thermal sensitivity and hemagglutination activity of lectins in different types of aquatic organisms were similar.
基金This work was financially supported by the National Key R&D Program(2017YFB0308500).
文摘Dialdehyde sodium alginate(DSA)is an alternative chrome-free tanning material for fur production.To obtain satisfactory resultant fur and provide suggestions for the usage of DSA in fur making,the general properties of DSA tanned sheep fur were systematically investigated.The tanning mechanism of DSA was analyzed and it was verified that DSA was mainly combined with collagen fiber by forming Schiff base covalent bonds while supplemented by a small number of hydrogen bonds and ionic bonds.Due to the acid sensitivity of Schiff base structure,DSA tanned fur had poor resistance to acid rinsing but had excellent resistance to washing and good fatliquoring performance.Also,it had good resistances to yellowing and reductant.After being retanned by chrome tanning agent,the fur was capable of enduring a high-temperature dyeing process(68°C for 8 h).Overall,DSA tanned sheep fur had favorable properties under appropriate post-tanning processing conditions to manufacture light-colored or dark-colored fur products with desirable physical properties.
文摘Novel catalytic systems for the Rh‐catalyzed hydroformylation of dicyclopentadiene have been developed using tris‐H8‐binaphthyl monophosphite as ligands containing different ester substituents at the 2’‐binaphthyl position(OCOMe,OCOPh,OCOAdamantyl and OCOPhCl).The catalysts exhibited high activity(S/C=4000,TON=3286)with good to excellent selectivity towards dialdehydes.Remarkably,the Rh(I)complex bearing the ligands with chlorophenyl ester substituents led to 99.9%conversion and 98.7%selectivity for dialdehydes under relatively mild conditions(6 MPa,120°C).
文摘Cell-laden cardiac patches have recently been emerging to renew cellular sources for myocardial infarction(MI,commonly know as a heart attack)repair.However,the fabrication of cell-laden patches with porous structure remains challenging due to the limitations of currently available hydrogels and existing processing techniques.The present study utilized a bioprinting technique to fabricate hydrogel patches and characterize them in terms of printability,mechanical and biological properties.Cell-laden hydrogel(or bio-ink)was formulated from alginate dialdehyde(ADA)and gelatin(GEL)to improve the printability,degradability as well as bioactivity.Five groups of hydrogel compositions were designed to investigate the influence of the oxidation degree of ADA and hydrogels concentration on the properties of printed scaffolds.ADA-GEL hydrogels have generally shown favorable for living cells(EA.hy926 cells and hybrid human umbilical vein endothelial cell line).The hydrogel with an oxidation degree of 10%and a concentration ratio of 70/30(or 10%ADA70-GEL30)demonstrated the best printability among the groups examined.Formulated hydrogels were also bioprinted with the living cells(EA.hy926),and the scaffolds printed were then subject to the cell culture for 7 days.Our results illustrate that the scaffolds bioprinted from 10%ADA70–GEL30 hydrogels had the best homogenous cell distribution and also the highest cell viability.Taken together,in the present study we synthesized a newly formulated bio-ink from ADA and GEL and for the fist time,used them to bioprint cardiac patches,which have the potential to be used in MI repair.
文摘DIALDEHYDES are important chemical industrial materials, which are widely used in textile,medicine, dye, binder, coating and so on. The traditional method for preparing dialdehydes is the catalytic oxidation of glycol. We have reported the reduction ring-opening reaction of inndazoline by NaBH<sub>4</sub>.In this note, the reduction of imidazoline by sodium and ethanol is studied. A new synthetic method for the preparation of dialdehydes from dicarboxylic acids
基金The authors thank the financial support of the Natural Science Foundation of Fujian Province (No. E0110010)
文摘Two title compounds, 4,4?diformyl-diphenoxyethane (compound 1, C16H14O4) and 4,4?4创-triformyl-triphenoxytriethylamine (compound 2, C27H27NO6), were synthesized by condensation of 4-hydroxybenzaldehyde with 1,2-dichloroethane and tris(2-chloroethyl)amine, respectively in dimethyl formamide in the presence of anhydrous potassium carbonate. The crystal data are: monoclinic, P21/c, a = 7.571(2), b = 12.608(3), c = 7.357(2) ? b = 105.823(6)? V = 675.7(2) 3, Mr = 270.3, Z = 2, Dc = 1.328 g/cm3, F(000) = 284, m(MoKa) = 0.096 mm-1, R = 0.0537 and wR = 0.2189 for compound 1; and monoclinic, P21/n, a = 11.7162(6), b = 9.0042(6), c = 22.908(2) ? b = 99.505(1)? V = 2383.5(3) ?, Mr = 461.50, Z = 4, Dc = 1.286 g/cm3, F(000)= 976, m(MoKa) = 0.091 mm-1, R = 0.0464 and wR = 0.1462 for compound 2. The molecule of compound 1 (dialdehyde) is located at the crystallographic inversion center nearby the midpoint of C(8)C(8A) single bond. The three chains in the molecule of compound 2 (trialdehyde) are of non-crystallographic pseudo-C3 symmetry, and each of them is quite planar.
基金This work was supposed by the Natural Science Foundation of Tianjin City(No.03380211)
文摘The adsorption of urea nitrogen onto chitosan coated dialdehyde cellulose (CDAC) under catalysis of immobilized urease in gelatin membrane (IE) was studied in batch system. The pseudo first-order and second-order kinetic models were used to describe the kinetic data, and the rate constants were evaluated. The experimental data fitted well to the second-order kinetic model.
文摘Eight new Schiff bases of 5-nitro and 5-bromo-substituted 1,10-phenanthroline-2,9-dicarboxaldehydes with sulfur-containing amines, thiosemicarbazide, S-alkyl/aryl dithiocarbazates and 2-mercaptoaniline have been synthesized and characterized by a variety of spectroscopic methods. The condensation reactions of the dialdehydes with the amines were carried out both in the presence and absence of conc. sulfuric acid. A significant increase in yield of the Schiff bases was observed when the reactions were carried out in the presence of sulfuric acid.
文摘In this study investigation of influence of hybrid nanosilica-polyethylene glycols materials (molecular weight 1500, 6000 and 15000), prepared by sol-gel synthesis, on lipid peroxidation and antioxidant activity of human serum in vitro was performed. Methods included chemiluminescence analysis and quantitative malonic dialdehyde estimation. It was revealed that nanosilica-PEG materials with different molecular weight had certain biological activity. Powders of SiO2-PEG 1500 and SiO2-PEG 6000 manifest prooxidant effects, whereas mesoporous (calcine) powders produced antioxidant effects in blood serum in vitro.
文摘Hydrogels with precisely designed structures represent promising materials with a broad application spectrum, such as for sensor, tissue engineering and biomimetic technology. However, with highly reactive compounds, the preparation of hydrogels still needs an efficient approach for desired distribution of each component within hydrogels. In addition, a method for in situ preparation of gradient hydrogels is still lacking. Herein, we report the formation ofhydrogels with either uniform or gradient internal structures via a novel, simple but very efficient method by aerating ammonia gas (NH3 gas) into the solution of dialdehyde cellulose (DAC) and a diamine. As-prepared hydrogels exhibited uniform microscopic and chemical structure or gradient distribution Of functional groups. Due to lots of aldehyde groups on DAC chains, functional hydrogels can be prepared by using diverse diamines. For instance, hydrogels prepared by using 1,6-hexanediamine as a cross-linker were responsive to pH values. Moreover, this controllable process of aerating NH3 gas allows the in situ formation of gradient hydrogels; for instance, by using cyanamide as a reaction counterpart, gradient hydrogels with gradient distributions of cyanide groups were prepared.
文摘Schiff bases are known to possess anticancer, antibacterial, antifungal, antitubercular, anti-inflammatory, antimicrobial and antimalarial properties. In this paper antibacterial studies against variety of plants and human pathogenic bacteria with eight newly synthesized Schiff bases and several intermediate silyl compounds have been reported. The antibacterial activities of the synthesized compounds were primarily determined by paper disc diffusion method. The minimum inhibitory concentration (MIC) of each compound was also determined by tube dilution process. Seven different human pathogenic bacteria and eighteen different plant pathogenic bacteria were used for the antibacterial activity studies. While all synthesized compounds have shown significant antibacterial activity, one intermediate silyl compound has shown remarkably high antibacterial property. 5-substituted derivatives have shown relatively higher activity than non-substituted compounds. Polar substituent which increases hydrophilicity may have a positive impact on the antibacterial property.