The aircraft system has recently gained its reputation as a reliable and efficient tool for sensing and parsing aerial scenes.However,accurate and fast semantic segmentation of highresolution aerial images for remote ...The aircraft system has recently gained its reputation as a reliable and efficient tool for sensing and parsing aerial scenes.However,accurate and fast semantic segmentation of highresolution aerial images for remote sensing applications is still facing three challenges:the requirements for limited processing resources and low-latency operations based on aerial platforms,the balance between high accuracy and real-time efficiency for model performance,and the confusing objects with large intra-class variations and small inter-class differences in high-resolution aerial images.To address these issues,a lightweight and dual-path deep convolutional architecture,namely Aerial Bilateral Segmentation Network(Aerial-Bi Se Net),is proposed to perform realtime segmentation on high-resolution aerial images with favorable accuracy.Specifically,inspired by the receptive field concept in human visual systems,Receptive Field Module(RFM)is proposed to encode rich multi-scale contextual information.Based on channel attention mechanism,two novel modules,called Feature Attention Module(FAM)and Channel Attention based Feature Fusion Module(CAFFM)respectively,are proposed to refine and combine features effectively to boost the model performance.Aerial-Bi Se Net is evaluated on the Potsdam and Vaihingen datasets,where leading performance is reported compared with other state-of-the-art models,in terms of both accuracy and efficiency.展开更多
Because stress has such a powerful impact on human health,we must be able to identify it automatically in our everyday lives.The human activity recognition(HAR)system use data from several kinds of sensors to try to r...Because stress has such a powerful impact on human health,we must be able to identify it automatically in our everyday lives.The human activity recognition(HAR)system use data from several kinds of sensors to try to recognize and evaluate human actions automatically recognize and evaluate human actions.Using the multimodal dataset DEAP(Database for Emotion Analysis using Physiological Signals),this paper presents deep learning(DL)technique for effectively detecting human stress.The combination of vision-based and sensor-based approaches for recognizing human stress will help us achieve the increased efficiency of current stress recognition systems and predict probable actions in advance of when fatal.Based on visual and EEG(Electroencephalogram)data,this research aims to enhance the performance and extract the dominating characteristics of stress detection.For the stress identification test,we utilized the DEAP dataset,which included video and EEG data.We also demonstrate that combining video and EEG characteristics may increase overall performance,with the suggested stochastic features providing the most accurate results.In the first step,CNN(Convolutional Neural Network)extracts feature vectors from video frames and EEG data.Feature Level(FL)fusion that combines the features extracted from video and EEG data.We use XGBoost as our classifier model to predict stress,and we put it into action.The stress recognition accuracy of the proposed method is compared to existing methods of Decision Tree(DT),Random Forest(RF),AdaBoost,Linear Discriminant Analysis(LDA),and KNearest Neighborhood(KNN).When we compared our technique to existing state-of-the-art approaches,we found that the suggested DL methodology combining multimodal and heterogeneous inputs may improve stress identification.展开更多
The Goodgrant Foundation is a charitable organization that wants to improve education performance of undergraduates attending colleges and universities in the US. So the foundation plans to contribute a total of US 50...The Goodgrant Foundation is a charitable organization that wants to improve education performance of undergraduates attending colleges and universities in the US. So the foundation plans to contribute a total of US 50 million for a suitable team of schools per year under the condition of avoiding repeated other large grant organizations’ investment. The DEA (Data Estimate Analysis) model is developed to determine an optimal investment strategy for the Goodgrant Foundation. In this paper, two questions were solved: how to choose a suitable team of schools and how to allocate the investment. Before the establishment of the model, the EXCEL software is used to preprocess data. Then the DEA model which includes two models in the paper is developed. For the first question, the CCR model is established to rank schools which used efficiency from DEAP 2.1. For the second question, the resource allocation model is established to allocate investment amount by weights of allocation from MATLAB software. Accordingly, the optimal investment strategy is received for the Goodgrant Foundation. Through the analysis above, 23 from 293 schools are selected to invest. Then the schools are ranked and the investment of US 50 million for 23 schools is allocated.展开更多
基金co-supported by the National Natural Science Foundation of China(Nos.U1833117 and 61806015)the National Key Research and Development Program of China(No.2017YFB0503402)。
文摘The aircraft system has recently gained its reputation as a reliable and efficient tool for sensing and parsing aerial scenes.However,accurate and fast semantic segmentation of highresolution aerial images for remote sensing applications is still facing three challenges:the requirements for limited processing resources and low-latency operations based on aerial platforms,the balance between high accuracy and real-time efficiency for model performance,and the confusing objects with large intra-class variations and small inter-class differences in high-resolution aerial images.To address these issues,a lightweight and dual-path deep convolutional architecture,namely Aerial Bilateral Segmentation Network(Aerial-Bi Se Net),is proposed to perform realtime segmentation on high-resolution aerial images with favorable accuracy.Specifically,inspired by the receptive field concept in human visual systems,Receptive Field Module(RFM)is proposed to encode rich multi-scale contextual information.Based on channel attention mechanism,two novel modules,called Feature Attention Module(FAM)and Channel Attention based Feature Fusion Module(CAFFM)respectively,are proposed to refine and combine features effectively to boost the model performance.Aerial-Bi Se Net is evaluated on the Potsdam and Vaihingen datasets,where leading performance is reported compared with other state-of-the-art models,in terms of both accuracy and efficiency.
文摘Because stress has such a powerful impact on human health,we must be able to identify it automatically in our everyday lives.The human activity recognition(HAR)system use data from several kinds of sensors to try to recognize and evaluate human actions automatically recognize and evaluate human actions.Using the multimodal dataset DEAP(Database for Emotion Analysis using Physiological Signals),this paper presents deep learning(DL)technique for effectively detecting human stress.The combination of vision-based and sensor-based approaches for recognizing human stress will help us achieve the increased efficiency of current stress recognition systems and predict probable actions in advance of when fatal.Based on visual and EEG(Electroencephalogram)data,this research aims to enhance the performance and extract the dominating characteristics of stress detection.For the stress identification test,we utilized the DEAP dataset,which included video and EEG data.We also demonstrate that combining video and EEG characteristics may increase overall performance,with the suggested stochastic features providing the most accurate results.In the first step,CNN(Convolutional Neural Network)extracts feature vectors from video frames and EEG data.Feature Level(FL)fusion that combines the features extracted from video and EEG data.We use XGBoost as our classifier model to predict stress,and we put it into action.The stress recognition accuracy of the proposed method is compared to existing methods of Decision Tree(DT),Random Forest(RF),AdaBoost,Linear Discriminant Analysis(LDA),and KNearest Neighborhood(KNN).When we compared our technique to existing state-of-the-art approaches,we found that the suggested DL methodology combining multimodal and heterogeneous inputs may improve stress identification.
文摘The Goodgrant Foundation is a charitable organization that wants to improve education performance of undergraduates attending colleges and universities in the US. So the foundation plans to contribute a total of US 50 million for a suitable team of schools per year under the condition of avoiding repeated other large grant organizations’ investment. The DEA (Data Estimate Analysis) model is developed to determine an optimal investment strategy for the Goodgrant Foundation. In this paper, two questions were solved: how to choose a suitable team of schools and how to allocate the investment. Before the establishment of the model, the EXCEL software is used to preprocess data. Then the DEA model which includes two models in the paper is developed. For the first question, the CCR model is established to rank schools which used efficiency from DEAP 2.1. For the second question, the resource allocation model is established to allocate investment amount by weights of allocation from MATLAB software. Accordingly, the optimal investment strategy is received for the Goodgrant Foundation. Through the analysis above, 23 from 293 schools are selected to invest. Then the schools are ranked and the investment of US 50 million for 23 schools is allocated.