针对SAR图像配准中匹配效率低、误匹配对多和配准精度差的问题,提出一种基于局部不变特征的SAR图像配准新算法.首先,使用加速分割检测特征(features from accelerated segment test,FAST)检测算法,检测SAR图像的FAST角点;使用DAISY描述...针对SAR图像配准中匹配效率低、误匹配对多和配准精度差的问题,提出一种基于局部不变特征的SAR图像配准新算法.首先,使用加速分割检测特征(features from accelerated segment test,FAST)检测算法,检测SAR图像的FAST角点;使用DAISY描述子对FAST特征进行描述,得到SAR图像不变特征。其次,采用基于KD树的欧氏距离匹配策略,实现特征点对的粗匹配;采用RANSAC算法去除误匹配,实现特征点对精匹配.然后,采用仿射变换模型,实现图像插值和图像变换,实现SAR图像粗配准。最后,建立配准精度评估反馈机制,实现配准优化.通过使用不同时相、不同工作模式HJ-1C星载SAR和不同极化、不同波段机载AIRSAR图像配准实验,提出算法与经典不变特征配准算法相比,具有适配性好、配准效率高的优点.展开更多
In the intricate network environment,the secure transmission of medical images faces challenges such as information leakage and malicious tampering,significantly impacting the accuracy of disease diagnoses by medical ...In the intricate network environment,the secure transmission of medical images faces challenges such as information leakage and malicious tampering,significantly impacting the accuracy of disease diagnoses by medical professionals.To address this problem,the authors propose a robust feature watermarking algorithm for encrypted medical images based on multi-stage discrete wavelet transform(DWT),Daisy descriptor,and discrete cosine transform(DCT).The algorithm initially encrypts the original medical image through DWT-DCT and Logistic mapping.Subsequently,a 3-stage DWT transformation is applied to the encrypted medical image,with the centre point of the LL3 sub-band within its low-frequency component serving as the sampling point.The Daisy descriptor matrix for this point is then computed.Finally,a DCT transformation is performed on the Daisy descriptor matrix,and the low-frequency portion is processed using the perceptual hashing algorithm to generate a 32-bit binary feature vector for the medical image.This scheme utilises cryptographic knowledge and zero-watermarking technique to embed watermarks without modifying medical images and can extract the watermark from test images without the original image,which meets the basic re-quirements of medical image watermarking.The embedding and extraction of water-marks are accomplished in a mere 0.160 and 0.411s,respectively,with minimal computational overhead.Simulation results demonstrate the robustness of the algorithm against both conventional attacks and geometric attacks,with a notable performance in resisting rotation attacks.展开更多
文摘针对SAR图像配准中匹配效率低、误匹配对多和配准精度差的问题,提出一种基于局部不变特征的SAR图像配准新算法.首先,使用加速分割检测特征(features from accelerated segment test,FAST)检测算法,检测SAR图像的FAST角点;使用DAISY描述子对FAST特征进行描述,得到SAR图像不变特征。其次,采用基于KD树的欧氏距离匹配策略,实现特征点对的粗匹配;采用RANSAC算法去除误匹配,实现特征点对精匹配.然后,采用仿射变换模型,实现图像插值和图像变换,实现SAR图像粗配准。最后,建立配准精度评估反馈机制,实现配准优化.通过使用不同时相、不同工作模式HJ-1C星载SAR和不同极化、不同波段机载AIRSAR图像配准实验,提出算法与经典不变特征配准算法相比,具有适配性好、配准效率高的优点.
基金National Natural Science Foundation of China,Grant/Award Numbers:62063004,62350410483Key Research and Development Project of Hainan Province,Grant/Award Number:ZDYF2021SHFZ093Zhejiang Provincial Postdoctoral Science Foundation,Grant/Award Number:ZJ2021028。
文摘In the intricate network environment,the secure transmission of medical images faces challenges such as information leakage and malicious tampering,significantly impacting the accuracy of disease diagnoses by medical professionals.To address this problem,the authors propose a robust feature watermarking algorithm for encrypted medical images based on multi-stage discrete wavelet transform(DWT),Daisy descriptor,and discrete cosine transform(DCT).The algorithm initially encrypts the original medical image through DWT-DCT and Logistic mapping.Subsequently,a 3-stage DWT transformation is applied to the encrypted medical image,with the centre point of the LL3 sub-band within its low-frequency component serving as the sampling point.The Daisy descriptor matrix for this point is then computed.Finally,a DCT transformation is performed on the Daisy descriptor matrix,and the low-frequency portion is processed using the perceptual hashing algorithm to generate a 32-bit binary feature vector for the medical image.This scheme utilises cryptographic knowledge and zero-watermarking technique to embed watermarks without modifying medical images and can extract the watermark from test images without the original image,which meets the basic re-quirements of medical image watermarking.The embedding and extraction of water-marks are accomplished in a mere 0.160 and 0.411s,respectively,with minimal computational overhead.Simulation results demonstrate the robustness of the algorithm against both conventional attacks and geometric attacks,with a notable performance in resisting rotation attacks.