Polar codes represent one of the major breakthroughs in 5G standard,and have been proven to be able to achieve the symmetric capacity of binary-input discrete memoryless channels using the successive cancellation list...Polar codes represent one of the major breakthroughs in 5G standard,and have been proven to be able to achieve the symmetric capacity of binary-input discrete memoryless channels using the successive cancellation list(SCL)decoding algorithm.However,the SCL algorithm suffers from a large amount of memory overhead.This paper proposes an adaptive simplified decoding algorithm for multiple cyclic redundancy check(CRC)polar codes.Simulation results show that the proposed method can reduce the decoding complexity and memory space.It can also acquire the performance gain in the low signal to noise ratio region.展开更多
Computational Radio Frequency IDentification (CRFID) is a device that integrates passive sensing and computing applications,which is powered by electromagnetic waves and read by the off-the-shelf Ultra High Frequency ...Computational Radio Frequency IDentification (CRFID) is a device that integrates passive sensing and computing applications,which is powered by electromagnetic waves and read by the off-the-shelf Ultra High Frequency Radio Frequency IDentification (UHF RFID) readers.Traditional RFID only identifies the ID of the tag,and CRFID is different from traditional RFID.CRFID needs to transmit a large amount of sensing and computing data in the mobile sensing scene.However,the current Electronic Product Code,Class-1 Generation-2 (EPC C1G2)protocol mainly aims at the transmission of multi-tag and minor data.When a large amount of data need to be fed back,a more reliable communication mechanism must be used to ensure the efficiency of data exchange.The main strategy of this paper is to adjust the data frame length of the CRFID response dynamically to improve the efficiency and reliability of CRFID backscattering communication according to energy acquisition and channel complexity.This is done by constructing a dynamic data frame length model and optimizing the command set of the interface protocol.Then,according to the actual situation of the uplink,a dynamic data validation method is designed,which reduces the data transmission delay and the probability of retransmitting,and improves the throughput.The simulation results show that the proposed scheme is superior to the existing methods.Under different energy harvesting and channel conditions,the dynamic data frame length and verification method can approach the theoretical optimum.展开更多
基金supported by the National Key R&D Program of China(2018YFB2101300)the National Science Foundation of China(61973056)
文摘Polar codes represent one of the major breakthroughs in 5G standard,and have been proven to be able to achieve the symmetric capacity of binary-input discrete memoryless channels using the successive cancellation list(SCL)decoding algorithm.However,the SCL algorithm suffers from a large amount of memory overhead.This paper proposes an adaptive simplified decoding algorithm for multiple cyclic redundancy check(CRC)polar codes.Simulation results show that the proposed method can reduce the decoding complexity and memory space.It can also acquire the performance gain in the low signal to noise ratio region.
基金supported by the National Key Basic Research and Development Program of China(No.2018YFB2200900)the National Natural Science Foundation of China(Nos.61772358 and 61972273)the Transformation and Cultivation Project of Scientific and Technological Achievements of Universities in Shanxi Province。
文摘Computational Radio Frequency IDentification (CRFID) is a device that integrates passive sensing and computing applications,which is powered by electromagnetic waves and read by the off-the-shelf Ultra High Frequency Radio Frequency IDentification (UHF RFID) readers.Traditional RFID only identifies the ID of the tag,and CRFID is different from traditional RFID.CRFID needs to transmit a large amount of sensing and computing data in the mobile sensing scene.However,the current Electronic Product Code,Class-1 Generation-2 (EPC C1G2)protocol mainly aims at the transmission of multi-tag and minor data.When a large amount of data need to be fed back,a more reliable communication mechanism must be used to ensure the efficiency of data exchange.The main strategy of this paper is to adjust the data frame length of the CRFID response dynamically to improve the efficiency and reliability of CRFID backscattering communication according to energy acquisition and channel complexity.This is done by constructing a dynamic data frame length model and optimizing the command set of the interface protocol.Then,according to the actual situation of the uplink,a dynamic data validation method is designed,which reduces the data transmission delay and the probability of retransmitting,and improves the throughput.The simulation results show that the proposed scheme is superior to the existing methods.Under different energy harvesting and channel conditions,the dynamic data frame length and verification method can approach the theoretical optimum.