Abstract: Our knowledge about soil organic matter (SOM) dynamics is limited although this is an important issue in the study of responses of ecosystems to global climate changes. Twelve sampling plots were set up ever...Abstract: Our knowledge about soil organic matter (SOM) dynamics is limited although this is an important issue in the study of responses of ecosystems to global climate changes. Twelve sampling plots were set up every 200 m from 1 700 to 3 900 m along the vertical vegetation gradient along the east slope of Gongga Mountain. Samples were taken from all 12 plots for SOM content measurement, although only 5 of the 12 plots were subjected to radiocarbon measurements. A radiocarbon isotope method and a time-dependent model were used to quantify the SOM dynamics and SOM turnover rates along the vertical vegetation gradient. The results showed that the SOM turnover rate decreased and turnover time increased with soil depth for all vegetation types. The litter layer turnover rates presented a clear trend along the gradient. The litter layer turnover rates decreased with an increase in elevation, except that the litter layer turnover rate of mixed forest was higher than that of evergreen forest. Climatic factors, such as temperature and precipitation, were the main factors influencing the surface soil carbon dynamics. The turnover rates of the subsoil (including the A, B, and C horizons in the soil profiles) along the vertical gradient had no clear trends. The SOM of subalpine shrub and meadow turned over more slowly than that of the forest types in almost all soil horizons. The characteristic of short roots distributing in the upper part of the soil profile leads to different SOM dynamics of shrub and meadow compared with the forest types. Coniferous and mixed forests were susceptible to carbon loss from the young carbon pool, but their long and big roots resulted in high Δ14C values of the deep soil profiles and increased the input of young carbon to the deep soil. In evergreen forest, the carbon cumulative ability from the B horizon to the C horizon was weak. The different vegetation types, together with their different modes of nutrient and carbon intake, may be the mechanism conditioning the subsoil organic matter 展开更多
Based on the finite time thermodynamics theory,the entransy theory and the entropy theory,the Stirling cycles under different conditions are analyzed and optimized with the maximum output power as the target in this p...Based on the finite time thermodynamics theory,the entransy theory and the entropy theory,the Stirling cycles under different conditions are analyzed and optimized with the maximum output power as the target in this paper.The applicability of entransy loss(EL),entransy dissipation(ED),entropy generation(EG),entropy generation number(EGN) and modified entropy generation number(MEGN) to the system optimization is investigated.The results show that the maximum EL rate corresponds to the maximum power output of the cycle working under the infinite heat reservoirs whose temperatures are prescribed,while the minimum EG rate and the extremum ED rate do not.For the Stirling cycle working under the finite heat reservoirs provided by the hot and cold streams whose inlet temperatures and the heat capacity flow rates are prescribed,the maximum EL rate,the minimum EG rate,the minimum EGN and the minimum MEGN all correspond to the maximum power output,but the extremum ED rate does not.When the heat capacity flow rate of the hot stream increases,the power output,the EL rate,the EG rate and the ED rate increase monotonously,while the EGN and the MEGN decrease first and then increase.The EL has best consistency in the power output optimizations of the Stirling cycles discussed in this paper.展开更多
文摘Abstract: Our knowledge about soil organic matter (SOM) dynamics is limited although this is an important issue in the study of responses of ecosystems to global climate changes. Twelve sampling plots were set up every 200 m from 1 700 to 3 900 m along the vertical vegetation gradient along the east slope of Gongga Mountain. Samples were taken from all 12 plots for SOM content measurement, although only 5 of the 12 plots were subjected to radiocarbon measurements. A radiocarbon isotope method and a time-dependent model were used to quantify the SOM dynamics and SOM turnover rates along the vertical vegetation gradient. The results showed that the SOM turnover rate decreased and turnover time increased with soil depth for all vegetation types. The litter layer turnover rates presented a clear trend along the gradient. The litter layer turnover rates decreased with an increase in elevation, except that the litter layer turnover rate of mixed forest was higher than that of evergreen forest. Climatic factors, such as temperature and precipitation, were the main factors influencing the surface soil carbon dynamics. The turnover rates of the subsoil (including the A, B, and C horizons in the soil profiles) along the vertical gradient had no clear trends. The SOM of subalpine shrub and meadow turned over more slowly than that of the forest types in almost all soil horizons. The characteristic of short roots distributing in the upper part of the soil profile leads to different SOM dynamics of shrub and meadow compared with the forest types. Coniferous and mixed forests were susceptible to carbon loss from the young carbon pool, but their long and big roots resulted in high Δ14C values of the deep soil profiles and increased the input of young carbon to the deep soil. In evergreen forest, the carbon cumulative ability from the B horizon to the C horizon was weak. The different vegetation types, together with their different modes of nutrient and carbon intake, may be the mechanism conditioning the subsoil organic matter
基金supported by the Tsinghua University Initiative Scientific Research Program
文摘Based on the finite time thermodynamics theory,the entransy theory and the entropy theory,the Stirling cycles under different conditions are analyzed and optimized with the maximum output power as the target in this paper.The applicability of entransy loss(EL),entransy dissipation(ED),entropy generation(EG),entropy generation number(EGN) and modified entropy generation number(MEGN) to the system optimization is investigated.The results show that the maximum EL rate corresponds to the maximum power output of the cycle working under the infinite heat reservoirs whose temperatures are prescribed,while the minimum EG rate and the extremum ED rate do not.For the Stirling cycle working under the finite heat reservoirs provided by the hot and cold streams whose inlet temperatures and the heat capacity flow rates are prescribed,the maximum EL rate,the minimum EG rate,the minimum EGN and the minimum MEGN all correspond to the maximum power output,but the extremum ED rate does not.When the heat capacity flow rate of the hot stream increases,the power output,the EL rate,the EG rate and the ED rate increase monotonously,while the EGN and the MEGN decrease first and then increase.The EL has best consistency in the power output optimizations of the Stirling cycles discussed in this paper.