A spatial web portal(SWP)provides a web-based gateway to discover,access,manage,and integrate worldwide geospatial resources through the Internet and has the access characteristics of regional to global interest and s...A spatial web portal(SWP)provides a web-based gateway to discover,access,manage,and integrate worldwide geospatial resources through the Internet and has the access characteristics of regional to global interest and spiking.Although various technologies have been adopted to improve SWP performance,enabling high-speed resource access for global users to better support Digital Earth remains challenging because of the computing and communication intensities in the SWP operation and the dynamic distribution of end users.This paper proposes a cloud-enabled framework for high-speed SWP access by leveraging elastic resource pooling,dynamic workload balancing,and global deployment.Experimental results demonstrate that the new SWP framework outperforms the traditional computing infrastructure and better supports users of a global system such as Digital Earth.Reported methodologies and framework can be adopted to support operational geospatial systems,such as monitoring national geographic state and spanning across regional and global geographic extent.展开更多
基金Research reported is partially supported by NSF[grant numbers PLR-1349259 and IIP-1338925],FGDC[grant number G13PG00091],and NASA[grant number NNG12PP37I].
文摘A spatial web portal(SWP)provides a web-based gateway to discover,access,manage,and integrate worldwide geospatial resources through the Internet and has the access characteristics of regional to global interest and spiking.Although various technologies have been adopted to improve SWP performance,enabling high-speed resource access for global users to better support Digital Earth remains challenging because of the computing and communication intensities in the SWP operation and the dynamic distribution of end users.This paper proposes a cloud-enabled framework for high-speed SWP access by leveraging elastic resource pooling,dynamic workload balancing,and global deployment.Experimental results demonstrate that the new SWP framework outperforms the traditional computing infrastructure and better supports users of a global system such as Digital Earth.Reported methodologies and framework can be adopted to support operational geospatial systems,such as monitoring national geographic state and spanning across regional and global geographic extent.