Video cutout refers to extracting moving objects from videos, which is an important step in many video editing tasks. Recent Mgorithms have limitations in terms of efficiency interaction style and robustness. This pap...Video cutout refers to extracting moving objects from videos, which is an important step in many video editing tasks. Recent Mgorithms have limitations in terms of efficiency interaction style and robustness. This paper presents a novel method for progressive video cutout with less user interaction and fast feedback. By exploring local and compact features, an optimization is constructed based on a graph model which establishes spatial and temporal relationship of neighboring patches in video frames. This optimization enables an efficient solution for progressive video cutout using graph cuts. Furthermore, a sampling-based method for temporally coherent matting is proposed to further refine video cutout results. Experiments demonstrate that our video cutout by paint selection is more intuitive and efficient for users than previous stroke-based methods, and thus could be put into practical use.展开更多
Based on Donnell's shallow shell equation, a new method is given in this paper to analyze theoretical solutions of stress concentrations about cylindrical shells with large openings. With the method of complex var...Based on Donnell's shallow shell equation, a new method is given in this paper to analyze theoretical solutions of stress concentrations about cylindrical shells with large openings. With the method of complex variable function, a series' of conformal mapping functions are obtained from different cutouts' boundary curves in the developed plane of a cylindrical shell to the unit circle. And, the general expressions for the equations of a cylindrical shell, including the solutions of stress concentrations meeting the boundary conditions of the large openings' edges, are given in the mapping plane. Furthermore, by applying the orthogonal function expansion technique, the problem can be summarized into the solution of infinite algebraic equation series. Finally, numerical results are obtained for stress concentration factors at the cutout's edge with various opening's ratios and different loading conditions. This new method, at the same time, gives a possibility to the research of cylindrical shells with large non-circular openings or with nozzles.展开更多
基金This work was supported by the National High Technology Research and Development 863 Program of China under Grant No. 2013AA013903, the Zhejiang Provincial Natural Science Foundation of China under Grant No. LY14F020050, and the National Basic Research 973 Program of China under Grant No. 2011CB302205. Acknowledgement The authors would like to thank anonymous reviewers and editors for their valuable comments.
文摘Video cutout refers to extracting moving objects from videos, which is an important step in many video editing tasks. Recent Mgorithms have limitations in terms of efficiency interaction style and robustness. This paper presents a novel method for progressive video cutout with less user interaction and fast feedback. By exploring local and compact features, an optimization is constructed based on a graph model which establishes spatial and temporal relationship of neighboring patches in video frames. This optimization enables an efficient solution for progressive video cutout using graph cuts. Furthermore, a sampling-based method for temporally coherent matting is proposed to further refine video cutout results. Experiments demonstrate that our video cutout by paint selection is more intuitive and efficient for users than previous stroke-based methods, and thus could be put into practical use.
文摘Based on Donnell's shallow shell equation, a new method is given in this paper to analyze theoretical solutions of stress concentrations about cylindrical shells with large openings. With the method of complex variable function, a series' of conformal mapping functions are obtained from different cutouts' boundary curves in the developed plane of a cylindrical shell to the unit circle. And, the general expressions for the equations of a cylindrical shell, including the solutions of stress concentrations meeting the boundary conditions of the large openings' edges, are given in the mapping plane. Furthermore, by applying the orthogonal function expansion technique, the problem can be summarized into the solution of infinite algebraic equation series. Finally, numerical results are obtained for stress concentration factors at the cutout's edge with various opening's ratios and different loading conditions. This new method, at the same time, gives a possibility to the research of cylindrical shells with large non-circular openings or with nozzles.