Copper–ceria(Cu O–CeO2) catalysts have been known to be very effective for the oxidation of CO, and their chemical behavior has been extensively studied during the last decades. However, the effect of different CeO2...Copper–ceria(Cu O–CeO2) catalysts have been known to be very effective for the oxidation of CO, and their chemical behavior has been extensively studied during the last decades. However, the effect of different CeO2 crystal surfaces on the catalytic activity of Cu O–CeO2 for the oxidation of CO is still unclear and should be further elucidated. In this study, we deposited 1 wt% Cu on mostly {100}-exposed CeO2 nanocubes(1 Cu Ce NC) and mostly {110}-exposed CeO2 nanorods(1 Cu Ce NR), respectively. Both 1 Cu Ce NC and 1 Cu Ce NR have been used as catalysts for the oxidation of CO and achieved 100% and 50% CO conversion at 130 ℃, respectively. The differences in the catalytic activity of 1 Cu Ce NC and 1 Cu Ce NR were analyzed using temperature-programmed reduction of H2 and temperature-programmed desorption of CO techniques. The results confirmed the excellent reducibility of the 1 Cu Ce NC catalyst, which was attributed to the weak interactions between Cu and the CeO2 support. Moreover, in situ diffuse reflectance infrared Fourier-transform spectroscopy studies indicated that the {100} planes of 1 Cu Ce NC facilitated the generation of active Cu(I) sites, which resulted in the formation of highly reactive Cu(I)-CO species during the oxidation of CO. Both the excellent redox properties and effective CO adsorption capacity of the 1 Cu Ce NC catalyst increased its catalytic reactivity.展开更多
文摘Copper–ceria(Cu O–CeO2) catalysts have been known to be very effective for the oxidation of CO, and their chemical behavior has been extensively studied during the last decades. However, the effect of different CeO2 crystal surfaces on the catalytic activity of Cu O–CeO2 for the oxidation of CO is still unclear and should be further elucidated. In this study, we deposited 1 wt% Cu on mostly {100}-exposed CeO2 nanocubes(1 Cu Ce NC) and mostly {110}-exposed CeO2 nanorods(1 Cu Ce NR), respectively. Both 1 Cu Ce NC and 1 Cu Ce NR have been used as catalysts for the oxidation of CO and achieved 100% and 50% CO conversion at 130 ℃, respectively. The differences in the catalytic activity of 1 Cu Ce NC and 1 Cu Ce NR were analyzed using temperature-programmed reduction of H2 and temperature-programmed desorption of CO techniques. The results confirmed the excellent reducibility of the 1 Cu Ce NC catalyst, which was attributed to the weak interactions between Cu and the CeO2 support. Moreover, in situ diffuse reflectance infrared Fourier-transform spectroscopy studies indicated that the {100} planes of 1 Cu Ce NC facilitated the generation of active Cu(I) sites, which resulted in the formation of highly reactive Cu(I)-CO species during the oxidation of CO. Both the excellent redox properties and effective CO adsorption capacity of the 1 Cu Ce NC catalyst increased its catalytic reactivity.