Experiments of X-ray diffraction for liquid Cu70Ni30 alloy above and below its liquidus (1 230℃) have been carried out. By the analysis of experimental results, it is discovered that difference between structures of ...Experiments of X-ray diffraction for liquid Cu70Ni30 alloy above and below its liquidus (1 230℃) have been carried out. By the analysis of experimental results, it is discovered that difference between structures of liquid and undercooled Cu70Ni30 alloy is their cluster sizes. The correlation radius of cluster is 1.125 nm and the atom number of cluster is 403 at 1 250-1 400℃, and they are 1.3 nm and 704 respectively at the undercooled liquid state (1 200℃). The structure of liquid alloy is fee short order and its solid structure, fcc, is kept from liquid fcc short order.展开更多
The early aging Cu precipitations in Fe-3%Cu and Fe-3%Cu-4%Ni ternary alloys are investigated by molecular dynamics (MD) simulations. The results show that the average size of Cu clusters in Fe-3%Cu-4%Ni alloy is la...The early aging Cu precipitations in Fe-3%Cu and Fe-3%Cu-4%Ni ternary alloys are investigated by molecular dynamics (MD) simulations. The results show that the average size of Cu clusters in Fe-3%Cu-4%Ni alloy is larger than that in Fe-3%Cu alloy. The diffusion of Cu is accelerated by Ni according to the mean square displacement (MSD). Furthermore, the whole formation process of Cu-rich clusters is analyzed in detail, and it is found that the presence of Ni promotes small Cu-rich clusters to be combined into big ones. Ni atoms prefer to stay at the combination positions of small clusters energetically due to a large number of the first nearest neighbor Cu-Ni interactions, which is verified by first-principles calculations based on density functional theory (DFT).展开更多
A molecular dynamics (MD) simulation study has been performed for the rapid solidification of Cu70Ni30 adopting the quantum Sutton-Chen many-body potentials. By analyzing the bond-types and the relation of atomic aver...A molecular dynamics (MD) simulation study has been performed for the rapid solidification of Cu70Ni30 adopting the quantum Sutton-Chen many-body potentials. By analyzing the bond-types and the relation of atomic average energy versus temperature, it was demonstrated that as cooling rate being 2 × 1012 K/s, the Cu70Ni30 formed fcc crystal structures and freezing point was found. In addition, having analyzed the transformation of microstructures and the detail of crystal growth by using atomic trace and visual method, not only could the formation of binary disordered solid solution be showed, but also the solidification of liquid metals and the crystal growth processes could be further understood.展开更多
A new concept of undercooling heredity is developed to evaluate the undercooling ability in a non catalytic nucleation coated mould, where alloy melts were highly undercooled previously. Before the heredity experiment...A new concept of undercooling heredity is developed to evaluate the undercooling ability in a non catalytic nucleation coated mould, where alloy melts were highly undercooled previously. Before the heredity experiment a non catalytic nucleation composite glass lined coating (B F) was prepared on the inner surface of mould and the Cu 70 Ni 30 alloy was selected to perform undercooling experiment in the B F non catalytic coating mould. Its ratio of undercooling heredity was 0.76. The results prove that the B F coating is an ideal non catalytic media for purified Cu 70 Ni 30 alloy melts due to its small contact angle between the melt and coating layer. Considering that various microstructures form under different undercoolings, two critical undercoolings, Δ T 1 and Δ T 2, and their corresponding microstructures of Cu 70 Ni 30 alloy are well defined. Moreover, it is found that the manned trigging solidification in the non catalytic coating mould could be used to get directional undercooling dendrite structure while the melt undercooling is larger than the critical undercooling Δ T 2.展开更多
Crystallization behavior of amorphous Zr 70 Cu 20 Ni 10 alloy isothermally annealed at 380 ℃ was first investigated by employing the differential scanning calorimetry (DSC) and transmission electron microscopy (TEM)....Crystallization behavior of amorphous Zr 70 Cu 20 Ni 10 alloy isothermally annealed at 380 ℃ was first investigated by employing the differential scanning calorimetry (DSC) and transmission electron microscopy (TEM). It has been found that an exothermic peak appears in the DSC trace when the annealing time is about 17~18 min, indicating a certain phase transformation occurs in the matrix of amorphous Zr 70 Cu 20 Ni 10 alloy. Meanwhile, isothermal annealing experiments for amorphous Zr 70 Cu 20 Ni 10 alloy ranging from 360 ℃ to 400 ℃ with a temperature interval of 10 ℃ were also carried out, from which no exothermic reaction can be observed except for the case of 380 ℃. This behavior indicates that the phase transformation during isothermal annealing of amorphous Zr 70 Cu 20 Ni 10 alloy is strongly temperature and time dependent. Further investigations are required to reveal the nature of such phenomenon.展开更多
文摘Experiments of X-ray diffraction for liquid Cu70Ni30 alloy above and below its liquidus (1 230℃) have been carried out. By the analysis of experimental results, it is discovered that difference between structures of liquid and undercooled Cu70Ni30 alloy is their cluster sizes. The correlation radius of cluster is 1.125 nm and the atom number of cluster is 403 at 1 250-1 400℃, and they are 1.3 nm and 704 respectively at the undercooled liquid state (1 200℃). The structure of liquid alloy is fee short order and its solid structure, fcc, is kept from liquid fcc short order.
基金supported by the National Natural Science Foundation of China(Grant Nos.50931003 and 51301102)the 085 Project at Shanghai University,China.
文摘The early aging Cu precipitations in Fe-3%Cu and Fe-3%Cu-4%Ni ternary alloys are investigated by molecular dynamics (MD) simulations. The results show that the average size of Cu clusters in Fe-3%Cu-4%Ni alloy is larger than that in Fe-3%Cu alloy. The diffusion of Cu is accelerated by Ni according to the mean square displacement (MSD). Furthermore, the whole formation process of Cu-rich clusters is analyzed in detail, and it is found that the presence of Ni promotes small Cu-rich clusters to be combined into big ones. Ni atoms prefer to stay at the combination positions of small clusters energetically due to a large number of the first nearest neighbor Cu-Ni interactions, which is verified by first-principles calculations based on density functional theory (DFT).
基金supported by the National Natural Science Foundation of China(Grant No.50271026).
文摘A molecular dynamics (MD) simulation study has been performed for the rapid solidification of Cu70Ni30 adopting the quantum Sutton-Chen many-body potentials. By analyzing the bond-types and the relation of atomic average energy versus temperature, it was demonstrated that as cooling rate being 2 × 1012 K/s, the Cu70Ni30 formed fcc crystal structures and freezing point was found. In addition, having analyzed the transformation of microstructures and the detail of crystal growth by using atomic trace and visual method, not only could the formation of binary disordered solid solution be showed, but also the solidification of liquid metals and the crystal growth processes could be further understood.
文摘A new concept of undercooling heredity is developed to evaluate the undercooling ability in a non catalytic nucleation coated mould, where alloy melts were highly undercooled previously. Before the heredity experiment a non catalytic nucleation composite glass lined coating (B F) was prepared on the inner surface of mould and the Cu 70 Ni 30 alloy was selected to perform undercooling experiment in the B F non catalytic coating mould. Its ratio of undercooling heredity was 0.76. The results prove that the B F coating is an ideal non catalytic media for purified Cu 70 Ni 30 alloy melts due to its small contact angle between the melt and coating layer. Considering that various microstructures form under different undercoolings, two critical undercoolings, Δ T 1 and Δ T 2, and their corresponding microstructures of Cu 70 Ni 30 alloy are well defined. Moreover, it is found that the manned trigging solidification in the non catalytic coating mould could be used to get directional undercooling dendrite structure while the melt undercooling is larger than the critical undercooling Δ T 2.
文摘Crystallization behavior of amorphous Zr 70 Cu 20 Ni 10 alloy isothermally annealed at 380 ℃ was first investigated by employing the differential scanning calorimetry (DSC) and transmission electron microscopy (TEM). It has been found that an exothermic peak appears in the DSC trace when the annealing time is about 17~18 min, indicating a certain phase transformation occurs in the matrix of amorphous Zr 70 Cu 20 Ni 10 alloy. Meanwhile, isothermal annealing experiments for amorphous Zr 70 Cu 20 Ni 10 alloy ranging from 360 ℃ to 400 ℃ with a temperature interval of 10 ℃ were also carried out, from which no exothermic reaction can be observed except for the case of 380 ℃. This behavior indicates that the phase transformation during isothermal annealing of amorphous Zr 70 Cu 20 Ni 10 alloy is strongly temperature and time dependent. Further investigations are required to reveal the nature of such phenomenon.