Cu−2Cr−1Nb alloy was fabricated by spark plasma sintering(SPS)using close coupled argon-atomized alloy powder as the raw material.The optimal SPS parameters obtained using the L9(3^(4))orthogonal test were 950℃,50 MP...Cu−2Cr−1Nb alloy was fabricated by spark plasma sintering(SPS)using close coupled argon-atomized alloy powder as the raw material.The optimal SPS parameters obtained using the L9(3^(4))orthogonal test were 950℃,50 MPa and 15 min,and the relative density of the as-sintered alloy was 99.8%.The rapid densification of SPS effectively inhibited the growth of the Cr_(2)Nb phase,and the atomized powder microstructure was maintained in the grains of the alloy matrix.Uniformly distributed multi-scale Cr_(2)Nb phases with grain sizes of 0.10−0.40μm and 20−100 nm and fine grains of alloy matrix with an average size of 3.79μm were obtained.After heat treatment at 500℃ for 2 h,the room temperature tensile strength,electrical conductivity,and thermal conductivity of the sintered Cu−2Cr−1Nb alloy were 332 MPa,86.7%(IACS),and 323.1 W/(m·K),respectively,and the high temperature tensile strength(700℃)was 76 MPa.展开更多
The effect of vacuum heat treatment on the microstructure and microhardness of cold-sprayed Cu-4%Cr-2%Nb alloy coating was investigated. The heat treatment was conducted under the temperatures from 250 ℃ to 950 ℃ wi...The effect of vacuum heat treatment on the microstructure and microhardness of cold-sprayed Cu-4%Cr-2%Nb alloy coating was investigated. The heat treatment was conducted under the temperatures from 250 ℃ to 950 ℃ with a step of 100 ℃ for 2 h. It was found that a dense thick Cu-4Cr-2Nb coating could be formed by cold spraying. After heat treatment, a Cr2Nb phase was uniformly distributed in the matrix, which was transferred from the gas-atomized feedstock. A little grain growth of Cr2Nb phase was observed accompanying with the healing-up of the incomplete interfaces between the deposited particles at the elevated temperatures. The coating microhardness increases a little with increasing the temperature to 350 ℃, and then decreases with further increasing temperature up to 950 ℃. This fact can be attributed to the microstructure evolution during the heat treatment.展开更多
基金financially supported by the National Key Research and Development Program of China (No.2016YFB0301300)Innovation Driven Project of Central South University,China (No.2015CX004)+1 种基金State Key Laboratory of Powder Metallurgy,Central South University,Chinathe Open Fund of National Joint Engineering Research Center for Abrasion Control and Molding of Metal Materials,China (No.HKDNM201907)。
文摘Cu−2Cr−1Nb alloy was fabricated by spark plasma sintering(SPS)using close coupled argon-atomized alloy powder as the raw material.The optimal SPS parameters obtained using the L9(3^(4))orthogonal test were 950℃,50 MPa and 15 min,and the relative density of the as-sintered alloy was 99.8%.The rapid densification of SPS effectively inhibited the growth of the Cr_(2)Nb phase,and the atomized powder microstructure was maintained in the grains of the alloy matrix.Uniformly distributed multi-scale Cr_(2)Nb phases with grain sizes of 0.10−0.40μm and 20−100 nm and fine grains of alloy matrix with an average size of 3.79μm were obtained.After heat treatment at 500℃ for 2 h,the room temperature tensile strength,electrical conductivity,and thermal conductivity of the sintered Cu−2Cr−1Nb alloy were 332 MPa,86.7%(IACS),and 323.1 W/(m·K),respectively,and the high temperature tensile strength(700℃)was 76 MPa.
文摘The effect of vacuum heat treatment on the microstructure and microhardness of cold-sprayed Cu-4%Cr-2%Nb alloy coating was investigated. The heat treatment was conducted under the temperatures from 250 ℃ to 950 ℃ with a step of 100 ℃ for 2 h. It was found that a dense thick Cu-4Cr-2Nb coating could be formed by cold spraying. After heat treatment, a Cr2Nb phase was uniformly distributed in the matrix, which was transferred from the gas-atomized feedstock. A little grain growth of Cr2Nb phase was observed accompanying with the healing-up of the incomplete interfaces between the deposited particles at the elevated temperatures. The coating microhardness increases a little with increasing the temperature to 350 ℃, and then decreases with further increasing temperature up to 950 ℃. This fact can be attributed to the microstructure evolution during the heat treatment.