铜铝层状复合金属板(clad metal sheet,CMS)材料集成了铜与铝的优良性能。其综合导电率高于铝合金,密度小于铜,界面为冶金结合层,可以有效避免导电状态下铜铝双金属搭接部位的腐蚀问题。在动力电池、储能电站、光伏发电、电力、电子、...铜铝层状复合金属板(clad metal sheet,CMS)材料集成了铜与铝的优良性能。其综合导电率高于铝合金,密度小于铜,界面为冶金结合层,可以有效避免导电状态下铜铝双金属搭接部位的腐蚀问题。在动力电池、储能电站、光伏发电、电力、电子、通讯器件、LED照明、建筑装饰面板、热沉材料等领域具有广泛的应用。介绍了铜铝CMS材料的主要产品形式,展示并展望了铜铝CMS材料的主要应用场景,提出了生产环节与研究机构值得关注的研究方向,概括了该材料大规模产业化与应用过程需要注意的若干问题。展开更多
Cu/Al bar clad material was fabricated by a drawing process and a subsequent heat treatment.During these processes,intermetallic compounds have been formed at the interface of Cu/Al and have affected its bonding prope...Cu/Al bar clad material was fabricated by a drawing process and a subsequent heat treatment.During these processes,intermetallic compounds have been formed at the interface of Cu/Al and have affected its bonding property.Microstructures of Cu/Al interfaces were observed by OM,SEM and EDX Analyser in order to investigate the bonding properties of the material.According to the microstructure a series of diffusion layers were observed at the interface and the thicknesses of diffusion layers have increased with aging time as a result of the diffusion bonding.The interfaces were composed of 3-ply diffusion layers and their compositions were changed with aging time at 400 °C.These compositional compounds were revealed to be η2,(θ+η2),(α+θ) intermetallic phases.It is evident from V-notch impact tests that the growth of the brittle diffusion layers with the increasing aging time directly influenced delamination distance between the Cu sleeve and the Al core.It is suggested that the proper holding time at 400 °C for aging as post heat treatment of a drawn Cu/Al bar clad material would be within 1 h.展开更多
文摘铜铝层状复合金属板(clad metal sheet,CMS)材料集成了铜与铝的优良性能。其综合导电率高于铝合金,密度小于铜,界面为冶金结合层,可以有效避免导电状态下铜铝双金属搭接部位的腐蚀问题。在动力电池、储能电站、光伏发电、电力、电子、通讯器件、LED照明、建筑装饰面板、热沉材料等领域具有广泛的应用。介绍了铜铝CMS材料的主要产品形式,展示并展望了铜铝CMS材料的主要应用场景,提出了生产环节与研究机构值得关注的研究方向,概括了该材料大规模产业化与应用过程需要注意的若干问题。
基金Project supported by the Fundamental Materials Development funded by the Korean Ministry of Knowledge Economy
文摘Cu/Al bar clad material was fabricated by a drawing process and a subsequent heat treatment.During these processes,intermetallic compounds have been formed at the interface of Cu/Al and have affected its bonding property.Microstructures of Cu/Al interfaces were observed by OM,SEM and EDX Analyser in order to investigate the bonding properties of the material.According to the microstructure a series of diffusion layers were observed at the interface and the thicknesses of diffusion layers have increased with aging time as a result of the diffusion bonding.The interfaces were composed of 3-ply diffusion layers and their compositions were changed with aging time at 400 °C.These compositional compounds were revealed to be η2,(θ+η2),(α+θ) intermetallic phases.It is evident from V-notch impact tests that the growth of the brittle diffusion layers with the increasing aging time directly influenced delamination distance between the Cu sleeve and the Al core.It is suggested that the proper holding time at 400 °C for aging as post heat treatment of a drawn Cu/Al bar clad material would be within 1 h.