To develop super-high strength Al-Li alloy,the microstructures and mechanical properties of Mg,Ag and Zn microalloyed Al-(3.2-3.8)Cu-(1.0-1.4)Li alloys(mass fraction) with T8 temper were studied.The results show...To develop super-high strength Al-Li alloy,the microstructures and mechanical properties of Mg,Ag and Zn microalloyed Al-(3.2-3.8)Cu-(1.0-1.4)Li alloys(mass fraction) with T8 temper were studied.The results showed that 1%of lower Li content restricted the strengthening effect of increasing Cu content,while simultaneous increase in Cu and Li contents contributed effectively to the enhancement of strength.The alloys were mainly strengthened by plenty of fine and well dispersed TI(Al2CuLi)precipitates.There were also some minor precipitates of θ'(Al2Cu) and δ'(Al3Li),which became less in number density,even disappeared during the aging process.Meanwhile,higher Li content favored the formation θ' and δ' and a small amount of S"(Al2CuMg) phases.In addition,strengthening effect and microstructure variation were analyzed through total non-solution mole fraction of Cu and Li and their mole ratio.To obtain Al-Li alloy with super-high strength,the total mole fractions of Cu and Li should be increased,and their mole ratios should also be kept at a certain high level.展开更多
Lithium(Li)is a promising candidate for nextgeneration battery anode due to its high theoretical specific capacity and low reduction potential.However,safety issues derived from the uncontrolled growth of Li dendrite ...Lithium(Li)is a promising candidate for nextgeneration battery anode due to its high theoretical specific capacity and low reduction potential.However,safety issues derived from the uncontrolled growth of Li dendrite and huge volume change of Li hinder its practical application.C onstructing dendrite-free composite Li anodes can significantly alleviate the above problems.Copper(Cu)-based materials have bee n widely used as substrates of the composite electrodes due to their chemical stability,excellent conductivity,and good mechanical strength.Copper/lithium(Cu/Li)composite anodes significantly regulate the local current density and decrease Li nucleation overp otential,realizing the uniform and dendrite-free Li deposition.In this review,Cu/Li composite methods including electrodeposition,melting infusion,and mechanical rolling are systematically summarized and discussed.Additionally,design strategies of Cu-based current collectors for high performance Cu/Li composite anodes are illustrated.General challenges and future development for Cu/Li composite anodes are presented and postulated.We hope that this review can provide a comprehensive understanding of Cu/Li composite methods of the latest development of Li metal anode and stimulate more research in the future.展开更多
Cu-Li battery with Cu metal cathode and Li metal anode is a candidate for next-generation energy storage system.While self-discharge of the battery can be suppressed with an anion exchange membrane,the voltage polariz...Cu-Li battery with Cu metal cathode and Li metal anode is a candidate for next-generation energy storage system.While self-discharge of the battery can be suppressed with an anion exchange membrane,the voltage polarization depends strongly on the electrolyte.Specifically,when an electrolyte with 3 M LiTFSI(lithium bis(trifluoromethanesulfonyl)imide)in dimethyl carbonate(DMC)is used,overpotential increases with cycling.In this work,we reveal why the voltage polarization changes,and reduce and stabilize it by replacing DMC solvent with a mixed solvent composed of dimethoxyethane(DME)and propylene carbonate(PC).The new electrolyte has higher ionic conductivity and stable solvation structure with more free TFSI-anions upon cycling,which also facilitates uniform plating of metal ions on the metal electrodes.These characteristics enable a stable Cu-Li battery with minimal change in overpotential for more than 1500 cycles at a current density of 2 m A cm^(-2).展开更多
As a typical immiscible binary system, copper (Cu) and lithium (Li) show no alloying and chemical intermixing under normal circumstances. Here we show that, when decreasing Cu nanoparticle sizes into ultrasmall range,...As a typical immiscible binary system, copper (Cu) and lithium (Li) show no alloying and chemical intermixing under normal circumstances. Here we show that, when decreasing Cu nanoparticle sizes into ultrasmall range, the nanoscale size effect can play a subtle yet critical role in mediating the chemical activity of Cu and therefore its miscibility with Li, such that the electrochemical alloying and solidstate amorphization will occur in such an immiscible system. This unusual observation was accomplished by performing in-situ studies of the electrochemical lithiation processes of individual CuO nanowires inside a transmission electron microscopy (TEM). Upon lithiation, CuO nanowires are first electrochemically reduced to form discrete ultrasmall Cu nanocrystals that, unexpectedly, can in turn undergo further electrochemical lithiation to form amorphous Cu Lixnanoalloys. Real-time TEM imaging unveils that there is a critical grain size (ca. 6 nm), below which the nanocrystalline Cu particles can be continuously lithiated and amorphized. The possibility that the observed solid-state amorphization of Cu-Li might be induced by electron beam irradiation effect can be explicitly ruled out; on the contrary, it was found that electron beam irradiation will lead to the dealloying of as-formed amorphous Cu Lixnanoalloys.展开更多
The effect of lithium on the casting microstructure of Cu-Li alloys was studied via the Wild MPS 46 Automatic camera, Deitz Diaplan, and scanning electron microscope. The result shows that trace lithium added to coppe...The effect of lithium on the casting microstructure of Cu-Li alloys was studied via the Wild MPS 46 Automatic camera, Deitz Diaplan, and scanning electron microscope. The result shows that trace lithium added to copper coarsens the grains of Cu-Li alloys in equiaxed crystal area because of the excellent purification effect. With the amount of lithium increasing, the average grain size increases sharply. But when the amount of lithium increases more, the average grain size decreases instead. At the same time, the typical dentritic crystal area of copper is diminished when lithium is added to pure copper.展开更多
A copper based binary alloy containing 16.9 at % lithium has been bombarded with deuterium ions in energy range of 400 eV to 2 keV at the incidence angles of 70° and 80° away from the surface normal. The spu...A copper based binary alloy containing 16.9 at % lithium has been bombarded with deuterium ions in energy range of 400 eV to 2 keV at the incidence angles of 70° and 80° away from the surface normal. The sputtered flux was condensed on Al- strips arranged arround the target in a cylindrical cup. 1.5 MeV proton backscattering and nuclear reaction 7Li(p, α)4He were used to detect the collected atoms of Cu and Li simultaneously. The angular distribution of sputtered atoms has been shown to be different for two components and strongly anisotropic for the grazing incidence. According to direct knock-on sputtering model and the experimental results the angle for the maximum differential sputtering yield is dependent on the incidence angle α, the bombarding energy E, the energy transfer factor γ= 4M1M2/(M1+ M2)2 and the surface binding energy U. With the assumption that the sputtered particles are diffracted by a planar barrier the surface binding energies of 2.3 eV for the Li component and 3.0 eV for the Cu component have been determined by fitting the measured angles of preferred ejection to the direct knock-on sputtering model, and the results agree well with a pair-binding model.展开更多
The electrical conductivity of Cu-Li alloys was studied. And the distribution of electrons near Fermi surface was detected by synchrotron radiation instrument. The results show that the electrical conductivity of Cu-L...The electrical conductivity of Cu-Li alloys was studied. And the distribution of electrons near Fermi surface was detected by synchrotron radiation instrument. The results show that the electrical conductivity of Cu-Li alloys decreases from 5.22 X 10(-9) S/m to 3.69 X 10(-9) S/m with the increase of Li content. Li can decrease the oxygen, sulfur and other impurities content in commercial Cu, but Li dissolved in Cu lattice leads to distortion of Cu lattice from 0.005%-0.050%, affects the valence band of Cu, increases the binding energy of surface electron, and decreases the electron density of Fermi surface simultaneously. So the electrical conductivity decreases gradually with the increase of Li content.展开更多
The microstructure evolution of Al-Cu-Li-Mn-Zr-Ti alloy during homogenization was investigated by optical microscopy (OM), scanning electron microscopy (SEM), energy dispersive X-ray spectrometry (EDX), and diff...The microstructure evolution of Al-Cu-Li-Mn-Zr-Ti alloy during homogenization was investigated by optical microscopy (OM), scanning electron microscopy (SEM), energy dispersive X-ray spectrometry (EDX), and differential scanning calorimeter (DSC) methods. The results show that severe dendritic segregation exists in the experimental alloy ingot. Numerous eutectic phases can be observed in the grain boundary, and the distribution of the main elements along the interdendritic region varies periodically. The main secondary phase is Al2Cu. The overburnt temperature of the alloy is 520 °C. The second phases are gradually dissolved into the matrix, and the grain boundaries become spare and thin during homogenization with increasing temperature or prolonging holding time. Homogenization can be described by a constitutive equation in exponential function. The suitable homogenization treatment for the alloy is (510 °C, 18 h), which agrees well with the results of homogenization kinetic analysis.展开更多
采用搅拌摩擦焊方法对2mm厚的Al Cu Li合金轧制板进行了焊接。接头内形成了焊核区、热机影响区和热影响区。焊核区由细等轴再结晶组织构成;热机影响区内的组织发生较大的弯曲变形,并在热循环的作用下发生了回复反应;热影响区形成了粗大...采用搅拌摩擦焊方法对2mm厚的Al Cu Li合金轧制板进行了焊接。接头内形成了焊核区、热机影响区和热影响区。焊核区由细等轴再结晶组织构成;热机影响区内的组织发生较大的弯曲变形,并在热循环的作用下发生了回复反应;热影响区形成了粗大的板条状组织。实验结果表明:在200mm/min的焊接速度下,接头的拉伸强度最高,达到393MPa,断裂形式为韧性和脆性的混合型断裂;在500mm/min的焊接速度下,接头强度为267.7MPa,断裂形式为脆性断裂。展开更多
The microstructural evolution of a Mg, Ag and Zn micro-alloyed Al?3.8Cu?1.28Li (mass fraction, %) alloy ingot during two-step homogenization was examined in detail by optical microscopy (OM), differential scanning cal...The microstructural evolution of a Mg, Ag and Zn micro-alloyed Al?3.8Cu?1.28Li (mass fraction, %) alloy ingot during two-step homogenization was examined in detail by optical microscopy (OM), differential scanning calorimetry (DSC), electron probe micro-analysis (EPMA) and X-ray diffraction (XRD) methods. The results show that severe dendritic segregation exists in the as-cast ingot. There are many secondary phases, includingTB(Al7Cu4Li),θ(Al2Cu),R(Al5CuLi3) andS(Al2CuMg) phases, and a small amount of (Mg+Ag+Zn)-containing and AlCuFeMn phases. The fractions of intermetallic phases decrease sharply after 2 h of second-step homogenization. By prolonging the second-step homogenization time, theTB,θ,R,S and (Mg+Ag+Zn)-containing phases completely dissolve into the matrix. The dendritic segregation is eliminated, and the homogenization kinetics can be described by a constitutive equation in exponential function. However, it seems that the AlCuFeMn phase is separated into Al7Cu2Fe and AlCuMn phases, and the size of Al7Cu2Fe phase exhibits nearly no change when the second-step homogenization time is longer than 2 h.展开更多
基金Project(2013AA032401)supported by the National High-tech Research and Development Program of ChinaProject(2013JSJJ 001)supported by Teacher's Research Foundation of Central South University,China
文摘To develop super-high strength Al-Li alloy,the microstructures and mechanical properties of Mg,Ag and Zn microalloyed Al-(3.2-3.8)Cu-(1.0-1.4)Li alloys(mass fraction) with T8 temper were studied.The results showed that 1%of lower Li content restricted the strengthening effect of increasing Cu content,while simultaneous increase in Cu and Li contents contributed effectively to the enhancement of strength.The alloys were mainly strengthened by plenty of fine and well dispersed TI(Al2CuLi)precipitates.There were also some minor precipitates of θ'(Al2Cu) and δ'(Al3Li),which became less in number density,even disappeared during the aging process.Meanwhile,higher Li content favored the formation θ' and δ' and a small amount of S"(Al2CuMg) phases.In addition,strengthening effect and microstructure variation were analyzed through total non-solution mole fraction of Cu and Li and their mole ratio.To obtain Al-Li alloy with super-high strength,the total mole fractions of Cu and Li should be increased,and their mole ratios should also be kept at a certain high level.
基金supported by the National Key Research and Development Program of China(No.2021YFB2500200)the National Natural Science Foundation of China(No.52302243)China Postdoctoral Science Foundation(Nos.2022M721029 and 2022M721030)。
文摘Lithium(Li)is a promising candidate for nextgeneration battery anode due to its high theoretical specific capacity and low reduction potential.However,safety issues derived from the uncontrolled growth of Li dendrite and huge volume change of Li hinder its practical application.C onstructing dendrite-free composite Li anodes can significantly alleviate the above problems.Copper(Cu)-based materials have bee n widely used as substrates of the composite electrodes due to their chemical stability,excellent conductivity,and good mechanical strength.Copper/lithium(Cu/Li)composite anodes significantly regulate the local current density and decrease Li nucleation overp otential,realizing the uniform and dendrite-free Li deposition.In this review,Cu/Li composite methods including electrodeposition,melting infusion,and mechanical rolling are systematically summarized and discussed.Additionally,design strategies of Cu-based current collectors for high performance Cu/Li composite anodes are illustrated.General challenges and future development for Cu/Li composite anodes are presented and postulated.We hope that this review can provide a comprehensive understanding of Cu/Li composite methods of the latest development of Li metal anode and stimulate more research in the future.
基金supported by a Research Matching Grant Scheme(PJ9229008)by the government of Hong Kong Special Administrative Region。
文摘Cu-Li battery with Cu metal cathode and Li metal anode is a candidate for next-generation energy storage system.While self-discharge of the battery can be suppressed with an anion exchange membrane,the voltage polarization depends strongly on the electrolyte.Specifically,when an electrolyte with 3 M LiTFSI(lithium bis(trifluoromethanesulfonyl)imide)in dimethyl carbonate(DMC)is used,overpotential increases with cycling.In this work,we reveal why the voltage polarization changes,and reduce and stabilize it by replacing DMC solvent with a mixed solvent composed of dimethoxyethane(DME)and propylene carbonate(PC).The new electrolyte has higher ionic conductivity and stable solvation structure with more free TFSI-anions upon cycling,which also facilitates uniform plating of metal ions on the metal electrodes.These characteristics enable a stable Cu-Li battery with minimal change in overpotential for more than 1500 cycles at a current density of 2 m A cm^(-2).
基金supported by the National Natural Science Foundation of China (11474337, 51472267, 21773303, and 51421002)the Program by Chinese Academy of Sciences (ZDYZ2015-1 and XDB07030100)Austrian-Chinese Cooperative R&D Projects, FFG and Chinese Academy of Sciences (112111KYSB20150002)
文摘As a typical immiscible binary system, copper (Cu) and lithium (Li) show no alloying and chemical intermixing under normal circumstances. Here we show that, when decreasing Cu nanoparticle sizes into ultrasmall range, the nanoscale size effect can play a subtle yet critical role in mediating the chemical activity of Cu and therefore its miscibility with Li, such that the electrochemical alloying and solidstate amorphization will occur in such an immiscible system. This unusual observation was accomplished by performing in-situ studies of the electrochemical lithiation processes of individual CuO nanowires inside a transmission electron microscopy (TEM). Upon lithiation, CuO nanowires are first electrochemically reduced to form discrete ultrasmall Cu nanocrystals that, unexpectedly, can in turn undergo further electrochemical lithiation to form amorphous Cu Lixnanoalloys. Real-time TEM imaging unveils that there is a critical grain size (ca. 6 nm), below which the nanocrystalline Cu particles can be continuously lithiated and amorphized. The possibility that the observed solid-state amorphization of Cu-Li might be induced by electron beam irradiation effect can be explicitly ruled out; on the contrary, it was found that electron beam irradiation will lead to the dealloying of as-formed amorphous Cu Lixnanoalloys.
文摘The effect of lithium on the casting microstructure of Cu-Li alloys was studied via the Wild MPS 46 Automatic camera, Deitz Diaplan, and scanning electron microscope. The result shows that trace lithium added to copper coarsens the grains of Cu-Li alloys in equiaxed crystal area because of the excellent purification effect. With the amount of lithium increasing, the average grain size increases sharply. But when the amount of lithium increases more, the average grain size decreases instead. At the same time, the typical dentritic crystal area of copper is diminished when lithium is added to pure copper.
文摘A copper based binary alloy containing 16.9 at % lithium has been bombarded with deuterium ions in energy range of 400 eV to 2 keV at the incidence angles of 70° and 80° away from the surface normal. The sputtered flux was condensed on Al- strips arranged arround the target in a cylindrical cup. 1.5 MeV proton backscattering and nuclear reaction 7Li(p, α)4He were used to detect the collected atoms of Cu and Li simultaneously. The angular distribution of sputtered atoms has been shown to be different for two components and strongly anisotropic for the grazing incidence. According to direct knock-on sputtering model and the experimental results the angle for the maximum differential sputtering yield is dependent on the incidence angle α, the bombarding energy E, the energy transfer factor γ= 4M1M2/(M1+ M2)2 and the surface binding energy U. With the assumption that the sputtered particles are diffracted by a planar barrier the surface binding energies of 2.3 eV for the Li component and 3.0 eV for the Cu component have been determined by fitting the measured angles of preferred ejection to the direct knock-on sputtering model, and the results agree well with a pair-binding model.
文摘The electrical conductivity of Cu-Li alloys was studied. And the distribution of electrons near Fermi surface was detected by synchrotron radiation instrument. The results show that the electrical conductivity of Cu-Li alloys decreases from 5.22 X 10(-9) S/m to 3.69 X 10(-9) S/m with the increase of Li content. Li can decrease the oxygen, sulfur and other impurities content in commercial Cu, but Li dissolved in Cu lattice leads to distortion of Cu lattice from 0.005%-0.050%, affects the valence band of Cu, increases the binding energy of surface electron, and decreases the electron density of Fermi surface simultaneously. So the electrical conductivity decreases gradually with the increase of Li content.
文摘The microstructure evolution of Al-Cu-Li-Mn-Zr-Ti alloy during homogenization was investigated by optical microscopy (OM), scanning electron microscopy (SEM), energy dispersive X-ray spectrometry (EDX), and differential scanning calorimeter (DSC) methods. The results show that severe dendritic segregation exists in the experimental alloy ingot. Numerous eutectic phases can be observed in the grain boundary, and the distribution of the main elements along the interdendritic region varies periodically. The main secondary phase is Al2Cu. The overburnt temperature of the alloy is 520 °C. The second phases are gradually dissolved into the matrix, and the grain boundaries become spare and thin during homogenization with increasing temperature or prolonging holding time. Homogenization can be described by a constitutive equation in exponential function. The suitable homogenization treatment for the alloy is (510 °C, 18 h), which agrees well with the results of homogenization kinetic analysis.
文摘采用搅拌摩擦焊方法对2mm厚的Al Cu Li合金轧制板进行了焊接。接头内形成了焊核区、热机影响区和热影响区。焊核区由细等轴再结晶组织构成;热机影响区内的组织发生较大的弯曲变形,并在热循环的作用下发生了回复反应;热影响区形成了粗大的板条状组织。实验结果表明:在200mm/min的焊接速度下,接头的拉伸强度最高,达到393MPa,断裂形式为韧性和脆性的混合型断裂;在500mm/min的焊接速度下,接头强度为267.7MPa,断裂形式为脆性断裂。
基金Project(2013JSJJ0001)supported by Teachers’Research Found,ChinaProject(2013AA032401)supported by the National High Technology Research and Development Program of ChinaProject supported by the Nonferrous Metal Oriented Advanced Structural Materials and Manufacturing Cooperative Innovation Center,China
文摘The microstructural evolution of a Mg, Ag and Zn micro-alloyed Al?3.8Cu?1.28Li (mass fraction, %) alloy ingot during two-step homogenization was examined in detail by optical microscopy (OM), differential scanning calorimetry (DSC), electron probe micro-analysis (EPMA) and X-ray diffraction (XRD) methods. The results show that severe dendritic segregation exists in the as-cast ingot. There are many secondary phases, includingTB(Al7Cu4Li),θ(Al2Cu),R(Al5CuLi3) andS(Al2CuMg) phases, and a small amount of (Mg+Ag+Zn)-containing and AlCuFeMn phases. The fractions of intermetallic phases decrease sharply after 2 h of second-step homogenization. By prolonging the second-step homogenization time, theTB,θ,R,S and (Mg+Ag+Zn)-containing phases completely dissolve into the matrix. The dendritic segregation is eliminated, and the homogenization kinetics can be described by a constitutive equation in exponential function. However, it seems that the AlCuFeMn phase is separated into Al7Cu2Fe and AlCuMn phases, and the size of Al7Cu2Fe phase exhibits nearly no change when the second-step homogenization time is longer than 2 h.