Mg and its alloys have continued to attract interest for several structural and super-sensitive applications because of their light weight and good combination of engineering properties.However for some of these appli...Mg and its alloys have continued to attract interest for several structural and super-sensitive applications because of their light weight and good combination of engineering properties.However for some of these applications,high plastic deformability is required to achieve desired component shapes and configurations;unfortunately,Mg and its alloys have low formability.Scientifically,the plastic behaviour of Mg and its alloys ranks among the most complex and difficult to reconcile in metallic material systems.But basically,the HCP crystal structure coupled with low stacking fault energies(SFE)are largely linked to the poor ductility exhibited by Mg alloys.These innate material characteristics have regrettably limited wide spread applicability of Mg and its alloys.Several research efforts aimed at exploring processing strategies to make these alloys more amenable for high formability–mediated engineering use have been reported and still ongoing.This paper reviews the structural metallurgy of Mg alloys and its influence on mechanical behaviour,specifically,plasticity characteristics.It also concisely presents various processing routes(Alloying,Traditional Forming and Severe Plastic Deformation(SPD))which have been explored to enhance plastic deformability in Mg and its alloys.Grain refinement and homogenising of phases,reducing CRSS between slip modes,twinning suppression to activate non-basal slip,and weakening and randomisation of the basal texture were observed as the formability enhancing strategies explored in the reviewed processes.While identifying the limitations of these strategies,further areas to be explored for enhancing plasticity of Mg alloys are highlighted.展开更多
Increasing the plastic deformation temperature of Mg alloys results in higher strain rate sensitivity,easier activation of secondary slip modes,and impeded twinning.In this study,the strain rate sensitivity is estimat...Increasing the plastic deformation temperature of Mg alloys results in higher strain rate sensitivity,easier activation of secondary slip modes,and impeded twinning.In this study,the strain rate sensitivity is estimated for each deformation mode,and visco-plastic self-consistent modeling is used to reproduce the plastic deformation behavior of an Mg-3Al-lZn O-temper plate from 150 to 450℃.Twinning and basal slip have relatively low strain rate sensitivity,whereas secondary slip modes are highly strain rate sensitive at high temperature.The texture evolution and plastic anisotropy are modeled at different temperatures and strain rates.Results show that when the strain rate sensitivity is taken into account,compared with rate independent critical resolved shear stresses,the material parameters and predictions are different.In particular,this study shows that,for hot deformation,there is a critical strain rate above which secondary slip modes predominate,and beyond which tension twinning is activated.A similar transition is expected for modes that have different strain rate sensitivity.展开更多
Grain scale plasticity of NiTi shape memory alloy(SMA)during uniaxial compression deformation at 400℃was investigated through two-dimensional crystal plasticity finite element simulation and corresponding analysis ba...Grain scale plasticity of NiTi shape memory alloy(SMA)during uniaxial compression deformation at 400℃was investigated through two-dimensional crystal plasticity finite element simulation and corresponding analysis based on the obtained orientation data.Stress and strain distributions of the deformed NiTi SMA samples confirm that there exhibits a heterogeneous plastic deformation at grain scale.Statistically stored dislocation(SSD)density and geometrically necessary dislocation(GND)density were further used in order to illuminate the microstructure evolution during uniaxial compression.SSD is responsible for sustaining plastic deformation and it increases along with the increase of plastic strain.GND plays an important role in accommodating compatible deformation between individual grains and thus it is correlated with the misorientation between neighboring grains,namely,a high GND density corresponds to large misorientation between grains and a low GND density corresponds to small misorientation between grains.展开更多
Texture evolution and inhomogeneous deformation of polycrystalline Cu during uniaxial compression are investigated at the grain scale by combining crystal plasticity finite element method(CPFEM) with particle swarm op...Texture evolution and inhomogeneous deformation of polycrystalline Cu during uniaxial compression are investigated at the grain scale by combining crystal plasticity finite element method(CPFEM) with particle swarm optimization(PSO) algorithm. The texture-based representative volume element(TBRVE) is used in the crystal plasticity finite element model, where a given number of crystallographic orientations are obtained by means of discretizing the orientation distribution function(ODF) based on electron backscattered diffraction(EBSD) experiment data. Three-dimensional grains with different morphologies are generated on the basis of Voronoi tessellation. The PSO algorithm plays a significant role in identifying the material parameters and saving computational time. The macroscopic stress–strain curve is predicted based on CPFEM, where the simulation results are in good agreement with the experimental ones. Therefore, CPFEM is a powerful candidate for capturing the texture evolution and clarifying the inhomogeneous plastic deformation of polycrystalline Cu. The simulation results indicate that the <110> fiber texture is generated finally with the progression of plastic deformation. The inhomogeneous distribution of rotation angles lays the foundation for the inhomogeneous deformation of polycrystalline Cu in terms of grain scale.展开更多
A dynamic compression test was performed on α+β dual-phase titanium alloy Ti20C using a split Hopkinson pressure bar.The formation of adiabatic shear bands generated during the compression process was studied by com...A dynamic compression test was performed on α+β dual-phase titanium alloy Ti20C using a split Hopkinson pressure bar.The formation of adiabatic shear bands generated during the compression process was studied by combining the proposed multi-scale crystal plasticity finite element method with experimental measurements.The complex local micro region load was progressively extracted from the simulation results of a macro model and applied to an established three-dimensional multi-grain microstructure model.Subsequently,the evolution histories of the grain shape,size,and orientation inside the adiabatic shear band were quantitatively simulated.The results corresponded closely to the experimental results obtained via transmission electron microscopy and precession electron diffraction.Furthermore,by calculating the grain rotation and temperature rise inside the adiabatic shear band,the microstructural softening and thermal softening effects of typical heavily-deformed α grains were successfully decoupled.The results revealed that the microstructural softening stress was triggered and then stabilized(in general)at a relatively high value.This indicated that the mechanical strength was lowered mainly by the grain orientation evolution or dynamic recrystallization occurring during early plastic deformation.Subsequently,thermal softening increased linearly and became the main softening mechanism.Noticeably,in the final stage,the thermal softening stress accounted for 78.4% of the total softening stress due to the sharp temperature increase,which inevitably leads to the stress collapse and potential failure of the alloy.展开更多
文摘Mg and its alloys have continued to attract interest for several structural and super-sensitive applications because of their light weight and good combination of engineering properties.However for some of these applications,high plastic deformability is required to achieve desired component shapes and configurations;unfortunately,Mg and its alloys have low formability.Scientifically,the plastic behaviour of Mg and its alloys ranks among the most complex and difficult to reconcile in metallic material systems.But basically,the HCP crystal structure coupled with low stacking fault energies(SFE)are largely linked to the poor ductility exhibited by Mg alloys.These innate material characteristics have regrettably limited wide spread applicability of Mg and its alloys.Several research efforts aimed at exploring processing strategies to make these alloys more amenable for high formability–mediated engineering use have been reported and still ongoing.This paper reviews the structural metallurgy of Mg alloys and its influence on mechanical behaviour,specifically,plasticity characteristics.It also concisely presents various processing routes(Alloying,Traditional Forming and Severe Plastic Deformation(SPD))which have been explored to enhance plastic deformability in Mg and its alloys.Grain refinement and homogenising of phases,reducing CRSS between slip modes,twinning suppression to activate non-basal slip,and weakening and randomisation of the basal texture were observed as the formability enhancing strategies explored in the reviewed processes.While identifying the limitations of these strategies,further areas to be explored for enhancing plasticity of Mg alloys are highlighted.
基金Thanks go to C.Tome for sharing the VPSC code.This study was supported by the National Natural Science Foundation of China(51421001)the'111' Project(B16007)by the Ministry of Education.
文摘Increasing the plastic deformation temperature of Mg alloys results in higher strain rate sensitivity,easier activation of secondary slip modes,and impeded twinning.In this study,the strain rate sensitivity is estimated for each deformation mode,and visco-plastic self-consistent modeling is used to reproduce the plastic deformation behavior of an Mg-3Al-lZn O-temper plate from 150 to 450℃.Twinning and basal slip have relatively low strain rate sensitivity,whereas secondary slip modes are highly strain rate sensitive at high temperature.The texture evolution and plastic anisotropy are modeled at different temperatures and strain rates.Results show that when the strain rate sensitivity is taken into account,compared with rate independent critical resolved shear stresses,the material parameters and predictions are different.In particular,this study shows that,for hot deformation,there is a critical strain rate above which secondary slip modes predominate,and beyond which tension twinning is activated.A similar transition is expected for modes that have different strain rate sensitivity.
基金Projects(51475101,51305091,51305092)supported by the National Natural Science Foundation of China
文摘Grain scale plasticity of NiTi shape memory alloy(SMA)during uniaxial compression deformation at 400℃was investigated through two-dimensional crystal plasticity finite element simulation and corresponding analysis based on the obtained orientation data.Stress and strain distributions of the deformed NiTi SMA samples confirm that there exhibits a heterogeneous plastic deformation at grain scale.Statistically stored dislocation(SSD)density and geometrically necessary dislocation(GND)density were further used in order to illuminate the microstructure evolution during uniaxial compression.SSD is responsible for sustaining plastic deformation and it increases along with the increase of plastic strain.GND plays an important role in accommodating compatible deformation between individual grains and thus it is correlated with the misorientation between neighboring grains,namely,a high GND density corresponds to large misorientation between grains and a low GND density corresponds to small misorientation between grains.
基金Projects(51305091,51475101) supported by the National Natural Science Foundation of ChinaProject(20132304120025) supported by Specialized Research Fund for the Doctoral Program of Higher Education,China
文摘Texture evolution and inhomogeneous deformation of polycrystalline Cu during uniaxial compression are investigated at the grain scale by combining crystal plasticity finite element method(CPFEM) with particle swarm optimization(PSO) algorithm. The texture-based representative volume element(TBRVE) is used in the crystal plasticity finite element model, where a given number of crystallographic orientations are obtained by means of discretizing the orientation distribution function(ODF) based on electron backscattered diffraction(EBSD) experiment data. Three-dimensional grains with different morphologies are generated on the basis of Voronoi tessellation. The PSO algorithm plays a significant role in identifying the material parameters and saving computational time. The macroscopic stress–strain curve is predicted based on CPFEM, where the simulation results are in good agreement with the experimental ones. Therefore, CPFEM is a powerful candidate for capturing the texture evolution and clarifying the inhomogeneous plastic deformation of polycrystalline Cu. The simulation results indicate that the <110> fiber texture is generated finally with the progression of plastic deformation. The inhomogeneous distribution of rotation angles lays the foundation for the inhomogeneous deformation of polycrystalline Cu in terms of grain scale.
基金financially supported by the National Natural Science Foundation of China(No.51571031)。
文摘A dynamic compression test was performed on α+β dual-phase titanium alloy Ti20C using a split Hopkinson pressure bar.The formation of adiabatic shear bands generated during the compression process was studied by combining the proposed multi-scale crystal plasticity finite element method with experimental measurements.The complex local micro region load was progressively extracted from the simulation results of a macro model and applied to an established three-dimensional multi-grain microstructure model.Subsequently,the evolution histories of the grain shape,size,and orientation inside the adiabatic shear band were quantitatively simulated.The results corresponded closely to the experimental results obtained via transmission electron microscopy and precession electron diffraction.Furthermore,by calculating the grain rotation and temperature rise inside the adiabatic shear band,the microstructural softening and thermal softening effects of typical heavily-deformed α grains were successfully decoupled.The results revealed that the microstructural softening stress was triggered and then stabilized(in general)at a relatively high value.This indicated that the mechanical strength was lowered mainly by the grain orientation evolution or dynamic recrystallization occurring during early plastic deformation.Subsequently,thermal softening increased linearly and became the main softening mechanism.Noticeably,in the final stage,the thermal softening stress accounted for 78.4% of the total softening stress due to the sharp temperature increase,which inevitably leads to the stress collapse and potential failure of the alloy.