The present study was performed mainly to investigate the antagonist-pathogen-host interaction in wounds of the sweet cherry fruits. The antagonistic yeast Cryptococcus laurentii could significantly reduce the brown r...The present study was performed mainly to investigate the antagonist-pathogen-host interaction in wounds of the sweet cherry fruits. The antagonistic yeast Cryptococcus laurentii could significantly reduce the brown rot of the sweet cherry fruit caused by Monilinia fructicola at 25 and 1 ℃. The populations of yeast increased faster in the presence of the pathogen initially, but then decreased rapidly. In the fruits inoculated with M. fructicola alone or combined with C. laurentii, an induction of lipid peroxidation as well as activities of the antioxidant enzymes, such as, superoxide dismutases (SOD), catalase (CAT), and peroxidase (POD), was observed. The isoenzyme pattern of polypheno/oxidase (PPO) changed greatly after the symptoms appeared, with new PPO isoforms being induced. By contrast, the induction of lipid peroxidation and activities of SOD, CAT, and POD were low, although no significant changes were found in the PPO isoenzyms in the fruits inoculated with antagonist C. laurentii alone. The inhibition of brown rot during the antagonist- pathogen-host interaction in wounds of the sweet cherry fruits was mainly on account of the stimulated growth of C. laurentii as well as the induction of antioxidant enzymes of the fruits by M. fructicola.展开更多
基金the Knowledge Innovation Program of the Chinese Academy of Sciences, China (KSCX2-YW-G-010); the National Natural Science Foundation of China (30671473).
文摘The present study was performed mainly to investigate the antagonist-pathogen-host interaction in wounds of the sweet cherry fruits. The antagonistic yeast Cryptococcus laurentii could significantly reduce the brown rot of the sweet cherry fruit caused by Monilinia fructicola at 25 and 1 ℃. The populations of yeast increased faster in the presence of the pathogen initially, but then decreased rapidly. In the fruits inoculated with M. fructicola alone or combined with C. laurentii, an induction of lipid peroxidation as well as activities of the antioxidant enzymes, such as, superoxide dismutases (SOD), catalase (CAT), and peroxidase (POD), was observed. The isoenzyme pattern of polypheno/oxidase (PPO) changed greatly after the symptoms appeared, with new PPO isoforms being induced. By contrast, the induction of lipid peroxidation and activities of SOD, CAT, and POD were low, although no significant changes were found in the PPO isoenzyms in the fruits inoculated with antagonist C. laurentii alone. The inhibition of brown rot during the antagonist- pathogen-host interaction in wounds of the sweet cherry fruits was mainly on account of the stimulated growth of C. laurentii as well as the induction of antioxidant enzymes of the fruits by M. fructicola.
文摘为探究罗伦隐球酵母(Cryptococcus laurentii)响应羧甲基纤维素(carboxymethyl cellulose,CMC)诱导培养的分子机理,为多糖诱导C.laurentii生理代谢相关基因的挖掘提供理论依据。该实验以不加CMC培养的C.laurentii为对照组,加0.5%(质量分数)CMC培养的C.laurentii为处理组(0.5%CMC),观察了CMC诱导培养对C.laurentii细胞生长形态变化。在此基础上,通过Illumina高通量测序技术,对2组酵母菌进行转录组测序,并采用生物信息学方法对数据分析。结果表明,添加0.5%(质量分数)CMC培养后,部分酵母细胞形态呈椭圆形,0.5%CMC诱导培养24~72 h,酵母细胞形态变化率显著(P<0.05)高于对照组。转录组数据分析表明,CMC诱导培养24 h,C.laurentii共有58个差异基因(differential genes,DEGs),其中55个为上调表达,3个为下调表达。DEGs被注释到24条GO(gene ontology)分类中和14条KEGG(Kyoto Encyclopedia of Genes and Genomes)通路中,分析结果表明,0.5%CMC诱导培养24 h C.laurentii涉及的DEGs功能主要与细胞能量代谢和生长、繁殖等有关。上述结果可以为多糖诱导培养对C.laurentii的生长影响及提高酵母拮抗效力分子机制的进一步研究提供科学依据,其可为C.laurentii形态变化相关基因挖掘提供理论基础,并为今后C.laurentii的商业化应用提供了一定的现实指导意义。