期刊文献+
共找到153篇文章
< 1 2 8 >
每页显示 20 50 100
基于序的空间金字塔池化网络的人群计数方法 被引量:38
1
作者 时增林 叶阳东 +1 位作者 吴云鹏 娄铮铮 《自动化学报》 EI CSCD 北大核心 2016年第6期866-874,共9页
视频中的人群计数在智能监控领域具有重要价值.由于摄像机透视效果、图像背景、人群密度分布不均匀和行人遮挡等干扰因素的制约,基于底层特征的传统计数方法准确率较低.本文提出一种基于序的空间金字塔池化(Rank-based spatial pyramid ... 视频中的人群计数在智能监控领域具有重要价值.由于摄像机透视效果、图像背景、人群密度分布不均匀和行人遮挡等干扰因素的制约,基于底层特征的传统计数方法准确率较低.本文提出一种基于序的空间金字塔池化(Rank-based spatial pyramid pooling,RSPP)网络的人群计数方法.该方法将原图像分成多个具有相同透视范围的子区域并在各个子区域分别取不同尺度的子图像块,采用基于序的空间金字塔池化网络估计子图像块人数,然后相加所有子图像块人数得出原图像人数.提出的图像分块方法有效地消除了摄像机透视效果和人群密度分布不均匀对计数的影响.提出的基于序的空间金字塔池化不仅能够处理多种尺度的子图像块,而且解决了传统池化方法易损失大量重要信息和易过拟合的问题.实验结果表明,本文方法相比于传统方法具有准确率高和鲁棒性好的优点. 展开更多
关键词 人群计数 空间金字塔池化 深度学习 卷积神经网络 岭回归
下载PDF
人数统计与人群密度估计技术研究现状与趋势 被引量:27
2
作者 张君军 石志广 李吉成 《计算机工程与科学》 CSCD 北大核心 2018年第2期282-291,共10页
人数统计与人群密度估计是人群分析中的重要分支,也是视频监控所关注的重要信息之一。尽管近几十年来该领域取得了一些重要进展,但仍存在一些具有挑战性的问题。综述了基于计算机视觉的人数统计与人群密度估计方法的研究现状以及发展动... 人数统计与人群密度估计是人群分析中的重要分支,也是视频监控所关注的重要信息之一。尽管近几十年来该领域取得了一些重要进展,但仍存在一些具有挑战性的问题。综述了基于计算机视觉的人数统计与人群密度估计方法的研究现状以及发展动态。首先,介绍了人数统计与人群密度估计技术的发展背景及应用方向。其次,总结了近年来提出的比较重要的方法,从机器学习的角度,将其分为浅层学习的方法和深度学习的方法;而从学习到的模型角度又可将其分为直接的方法(即基于检测的方法)和间接的方法(如基于像素的方法、基于纹理的方法以及基于角点的方法)。详细介绍了近二十年来基于浅层学习的方法,并对近些年来基于深度学习的人数统计与人群密度估计技术做了一个简要的总结。然后,对人数统计及人群密度估计方法性能评估技术进行简介,并提供了几个用于人数统计与人群密度估计的测试与评估数据集。最后,总结了该领域存在的技术挑战并对未来的研究方向进行了展望。 展开更多
关键词 人数统计 人群密度估计 浅层学习 深度学习
下载PDF
基于深度学习的人群计数研究综述 被引量:14
3
作者 余鹰 朱慧琳 +2 位作者 钱进 潘诚 苗夺谦 《计算机研究与发展》 EI CSCD 北大核心 2021年第12期2724-2747,共24页
人群计数旨在估计图像或视频中人群的数量、密度或分布,属于目标计数(object counting)领域的研究范畴,广泛应用于人群行为分析、公共安全管理之中,以便及时发现人群拥挤或异常行为,避免事故发生.鉴于人群计数系统强大的实用性,自21世... 人群计数旨在估计图像或视频中人群的数量、密度或分布,属于目标计数(object counting)领域的研究范畴,广泛应用于人群行为分析、公共安全管理之中,以便及时发现人群拥挤或异常行为,避免事故发生.鉴于人群计数系统强大的实用性,自21世纪以来,研究者对其方法及应用进行了大量广泛的研究.近年来,深度学习技术发展迅猛,很多工作发现深度学习技术可以有效地解决人群计数系统存在的一系列关键问题,例如跨场景计数、透视畸变、尺度变化等.因此,对基于深度学习的人群计数这一研究领域进行回顾、分析和展望.具体地,首先从概念、步骤、方法等维度详细介绍人群计数模型,分析基于传统方法和基于深度学习方法这2类人群计数模型的差异.然后,从计数网络结构、ground-truth生成、损失函数、评价指标这4个方面阐述基于深度学习的人群计数模型的研究现状.最后,比较分析了各种人群计数数据集的特点,并探讨和展望人群计数领域未来可能的研究方向. 展开更多
关键词 人群计数 密度图估计 多尺度 深度学习 卷积神经网络
下载PDF
基于视频分析的人群密集场所客流监控预警研究 被引量:12
4
作者 陈冲 白硕 +2 位作者 黄丽达 王晓萌 刘春慧 《中国安全生产科学技术》 CAS CSCD 北大核心 2020年第4期143-148,共6页
为实现人群密集场所客流安全隐患早发现,辅助管理人员早决策,人群聚集风险区早疏散,提升对灾难的预见性和主动性。在国内外人群异常聚集监测预警现状分析基础上,对比分析得出监控视频分析技术是解决人群密集场所精准预警难题较为理想的... 为实现人群密集场所客流安全隐患早发现,辅助管理人员早决策,人群聚集风险区早疏散,提升对灾难的预见性和主动性。在国内外人群异常聚集监测预警现状分析基础上,对比分析得出监控视频分析技术是解决人群密集场所精准预警难题较为理想的解决方案;构建以视频智能分析的人群计数、密度估计、行人追踪、活动烈度识别为核心技术的人群密集场所风险预警技术框架;将该技术框架应用到某大型商圈的商业街区,获得监控区域内的人群总数、密度分布、行人轨迹和异常活动等特征。结果表明:提出的基于视频分析的人群密集场所风险预警技术框架可为城市大型商圈、交通枢纽、大型活动场所等城市公共场所的安全管理提供参考和借鉴。 展开更多
关键词 人群密集场所 人群计数 人群密度 异常行为 监控预警
下载PDF
基于多尺度融合的深度人群计数算法 被引量:13
5
作者 左静 巴玉林 《激光与光电子学进展》 CSCD 北大核心 2020年第24期307-315,共9页
在人群计数统计时存在相机透视、人群重叠、人群遮挡等众多干扰因素,使人群计数的准确性不高。针对这一问题,提出一种多尺度融合的深度人群计数算法。首先,利用VGG-16网络的部分结构提取出人群底层特征信息;其次,以膨胀卷积理论为基础,... 在人群计数统计时存在相机透视、人群重叠、人群遮挡等众多干扰因素,使人群计数的准确性不高。针对这一问题,提出一种多尺度融合的深度人群计数算法。首先,利用VGG-16网络的部分结构提取出人群底层特征信息;其次,以膨胀卷积理论为基础,构建多尺度特征提取模块,实现多尺度上下文特征信息的提取,降低模型参数量;最后通过将底层细节特征信息和高层语义特征信息融合的方式,提升模型计数性能和密度图质量。在三个公开数据集上对不同算法进行测试。实验结果表明,与其他人群计数算法相比,所提算法的平均绝对误差和方均误差均有不同程度的降低,说明所提算法具有较好的准确性、鲁棒性及良好的泛化性。 展开更多
关键词 机器视觉 人群计数 密度图 卷积神经网络 膨胀卷积 特征融合
原文传递
基于特征金字塔网络的人群计数算法 被引量:11
6
作者 马皓 殷保群 彭思凡 《计算机工程》 CAS CSCD 北大核心 2019年第7期203-207,共5页
由于单张图片人群计数存在严重的人群遮挡和尺度变化问题,导致人群计数算法性能明显下降。为此,提出一种基于特征金字塔网络对图片进行人群计数的算法,并给出能够处理任意图片分辨率的全卷积网络。将特征金字塔网络应用到人群计数中,通... 由于单张图片人群计数存在严重的人群遮挡和尺度变化问题,导致人群计数算法性能明显下降。为此,提出一种基于特征金字塔网络对图片进行人群计数的算法,并给出能够处理任意图片分辨率的全卷积网络。将特征金字塔网络应用到人群计数中,通过逐层融合网络中不同尺度的特征图来解决图片中的上述问题。在人群计数数据库ShanghaiTech上对网络模型进行训练和性能评测,结果表明,与当前主流的人群计数算法相比,该算法具有更高的鲁棒性和准确性。 展开更多
关键词 人群计数 卷积神经网络 特征金字塔 密度图 平均绝对误差
下载PDF
基于GPU的视频流人群实时计数 被引量:10
7
作者 姬丽娜 陈庆奎 +3 位作者 陈圆金 赵德玉 方玉玲 赵永涛 《计算机应用》 CSCD 北大核心 2017年第1期145-152,共8页
为了解决人群遮挡严重、光照突变等恶劣环境下人群计数准确率低的问题,提出基于混合高斯模型(GMM)和尺度不变特征变换(SIFT)特征的人群数量统计分析新方法。首先,基于GMM提取运动人群,并采用灰度共生矩阵(GLCM)和形态学方法去除背景中... 为了解决人群遮挡严重、光照突变等恶劣环境下人群计数准确率低的问题,提出基于混合高斯模型(GMM)和尺度不变特征变换(SIFT)特征的人群数量统计分析新方法。首先,基于GMM提取运动人群,并采用灰度共生矩阵(GLCM)和形态学方法去除背景中移动的小物体和较密集的噪声等非人群前景,针对GMM算法提出了一种效率较高的并行模型;接着,检测运动人群的SIFT特征点作为人群统计的基础,基于二值图像的特征提取大大减少了执行时间;最后,提出基于人群特征数和人群数量进行统计分析的新方法,选择不同等级的人群数量的数据集分别进行训练,统计得出平均单个特征点数,并对不同密度的行人进行计数实验。算法采用基于GPU多流处理器进行加速,并针对所提算法在统一计算设备架构(CUDA)流上任务的有效调度的方法进行分析。实验结果显示,相比单流提速31.5%,相比CPU提速71.8%。 展开更多
关键词 视频监控 GPU并行计算 人群计数 尺度不变特征变换 混合高斯模型 统一计算设备架构
下载PDF
FF-CAM:基于通道注意机制前后端融合的人群计数 被引量:10
8
作者 张宇倩 李国辉 +1 位作者 雷军 何嘉宇 《计算机学报》 EI CSCD 北大核心 2021年第2期304-317,共14页
单个图像中的人群计数在计算机视觉领域中备受关注,因为其在公共安全方面具有重要作用.例如,在人群聚集的场景中监控设备可以实时监测人群数量变化,对过度拥挤和异常情况进行预警以预防安全事故的发生.然而,由于受到遮挡、透视扭曲、尺... 单个图像中的人群计数在计算机视觉领域中备受关注,因为其在公共安全方面具有重要作用.例如,在人群聚集的场景中监控设备可以实时监测人群数量变化,对过度拥挤和异常情况进行预警以预防安全事故的发生.然而,由于受到遮挡、透视扭曲、尺度变化和背景干扰的严重影响,在单个图像中对人群计数的预测要达到较高精确度是极其困难的,其面临着巨大的挑战.在本文中,我们提出了一个名为FF-CAM的创新性模型来计算图像中的人群数量.它首先将主网络低层的特征图与高层的特征图合并,实现不同尺度的特征融合,且无需额外的分支或子任务,解决了由于透视导致的尺度多样性问题.随后融合的特征图被送入通道注意力模块以优化不同特征的融合过程,并进行特征通道的重新校准以充分使用全局和空间信息.此外,我们在网络的末端利用扩张卷积来获得高质量的人群密度图,扩张卷积层扩大了感受野,其输出包含更详细的空间信息和全局信息,不会降低空间分辨率.最后,我们加入基于SSIM的损失函数用于比较估计人群密度图和真值的局部相关性,以及基于回归人数的损失函数用于比较估计人群数量与真实人数之间的差异.我们的FF-CAM在UCF_CC_50数据集、ShanghaiTech数据集和UCF_QRNF数据集中进行训练并测试,获得了出色的结果.在UCF_CC_50数据集上比现有方法的MAE提高了4.5%,MSE提高了3.8%. 展开更多
关键词 人群计数 特征融合 通道注意力 扩张卷积 高质量密度图
下载PDF
编码-解码多尺度卷积神经网络人群计数方法 被引量:9
9
作者 孟月波 纪拓 +2 位作者 刘光辉 徐胜军 李彤月 《西安交通大学学报》 EI CAS CSCD 北大核心 2020年第5期149-157,共9页
针对基于多列卷积神经网络的人群计数方法存在的多尺度特征信息丢失、融合不佳以及密度图质量不高等问题,提出了一种编码-解码结构的多尺度卷积神经网络人群计数方法。编码器采用多列卷积捕获多尺度特征,通过空洞空间金字塔池化扩大感... 针对基于多列卷积神经网络的人群计数方法存在的多尺度特征信息丢失、融合不佳以及密度图质量不高等问题,提出了一种编码-解码结构的多尺度卷积神经网络人群计数方法。编码器采用多列卷积捕获多尺度特征,通过空洞空间金字塔池化扩大感受野并减少参数量,保留尺度特征和图像的上下文信息;解码器对编码器输出进行上采样,实现高层语义信息和编码器前端低层特征信息有效融合,从而提升了密度图的输出质量。为增强网络对计数的敏感性,在以往像素空间损失的基础上考虑了计数误差,提出了一种新型损失函数。采用Shanghai Tech、Mall以及自建数据集进行了对比实验,结果表明:与之前最优方法相比,所提方法在Shanghai Tech数据集Part_A部分的平均绝对误差和均方误差分别降低了8.3%和21.3%,Part_B部分分别降低了12.9%和12.0%,Mall数据集分别降低了15.1%和23.8%,自建数据集分别降低了13.5%和7.1%;在不同人群场景下,所提方法的人群计数准确性和鲁棒性均优于其他对比方法的。 展开更多
关键词 人群计数 编码-解码结构 多尺度 空洞空间金字塔池化 计数误差 损失函数
下载PDF
基于多尺度多列卷积神经网络的密集人群计数模型 被引量:9
10
作者 陆金刚 张莉 《计算机应用》 CSCD 北大核心 2019年第12期3445-3449,共5页
针对尺度和视角变化导致的监控视频和图像中的人数估计性能差的问题,提出了一种基于多尺度多列卷积神经网络(MsMCNN)的密集人群计数模型。在使用MsMCNN进行特征提取之前,使用高斯滤波器对数据集进行处理得到图像的真实密度图,并且对数... 针对尺度和视角变化导致的监控视频和图像中的人数估计性能差的问题,提出了一种基于多尺度多列卷积神经网络(MsMCNN)的密集人群计数模型。在使用MsMCNN进行特征提取之前,使用高斯滤波器对数据集进行处理得到图像的真实密度图,并且对数据集进行数据增强。MsMCNN以多列卷积神经网络的结构为主干,首先从具有多尺度的多个列中提取特征图;然后,用MsMCNN在同一列上连接具有相同分辨率的特征图,以生成图像的估计密度图;最后,对估计密度图进行积分来完成人群计数的任务。为了验证所提模型的有效性,在Shanghaitech数据集和UCFCC50数据集上进行了实验,与经典模型Crowdnet、多列卷积神经网络(MCNN)、级联多任务学习(CMTL)方法、尺度自适应卷积神经网络(SaCNN)相比,所提模型在Shanghaitech数据集PartA和UCFCC50数据集上平均绝对误差(MAE)分别至少减小了10.6和24.5,均方误差(MSE)分别至少减小了1.8和29.3;在Shanghaitech数据集PartB上也取得了较好的结果。MsMCNN更注重特征提取过程中的浅层特征的结合以及多尺度特征的结合,可以有效减少尺度和视角变化带来的精确度偏低的影响,提升人群计数的性能。 展开更多
关键词 密集人群计数 密度图 卷积神经网络 多尺度 尺度和视角变化
下载PDF
基于对抗式扩张卷积的多尺度人群密度估计 被引量:7
11
作者 刘思琦 郎丛妍 冯松鹤 《中国图象图形学报》 CSCD 北大核心 2019年第3期483-492,共10页
目的人群密度估计任务是通过对人群特征的提取和分析,估算出密度分布情况和人群计数结果。现有技术运用的CNN网络中的下采样操作会丢失部分人群信息,且平均融合方式会使多尺度效应平均化,该策略并不一定能得到准确的估计结果。为了解决... 目的人群密度估计任务是通过对人群特征的提取和分析,估算出密度分布情况和人群计数结果。现有技术运用的CNN网络中的下采样操作会丢失部分人群信息,且平均融合方式会使多尺度效应平均化,该策略并不一定能得到准确的估计结果。为了解决上述问题,提出一种新的基于对抗式扩张卷积的多尺度人群密度估计模型。方法利用扩张卷积在不损失分辨率的情况下对输入图像进行特征提取,且不同的扩张系数可以聚集多尺度上下文信息。最后通过对抗式损失函数将网络中提取的不同尺度的特征信息以合作式的方式融合,得到准确的密度估计结果。结果在4个主要的人群计数数据集上进行对比实验。在测试阶段,将测试图像输入训练好的生成器网络,输出预测密度图;将密度图积分求和得到总人数,并以平均绝对误差(MAE)和均方误差(MSE)作为评价指标进行结果对比。其中,在Shanghai Tech数据集上Part_A的MAE和MSE分别降至60. 5和109. 7,Part_B的MAE和MSE分别降至10. 2和15. 3,提升效果明显。结论本文提出了一种新的基于对抗式扩张卷积的多尺度人群密度估计模型。实验结果表明,在人群分布差异较大的场景中构建的算法模型有较好的自适应性,能根据不同的场景提取特征估算密度分布,并对人群进行准确计数。 展开更多
关键词 人群密度估计 多尺度 对抗式损失 扩张卷积 计算机视觉 人群安全
原文传递
基于优化的Inception ResNet A模块与Gradient Boosting的人群计数方法 被引量:8
12
作者 郭瑞琴 陈雄杰 +1 位作者 骆炜 符长虹 《同济大学学报(自然科学版)》 EI CAS CSCD 北大核心 2019年第8期1216-1224,共9页
针对人群计数问题,基于优化Inception-ResNet-A模块,使用集成学习中的Gradient Boosting方法提出了一种可用于稀疏人群和密集人群的人群计数方法,并给出此方法实现的具体细节.通过在三个公开数据集和真实场景(含光照和视角变化)中进行测... 针对人群计数问题,基于优化Inception-ResNet-A模块,使用集成学习中的Gradient Boosting方法提出了一种可用于稀疏人群和密集人群的人群计数方法,并给出此方法实现的具体细节.通过在三个公开数据集和真实场景(含光照和视角变化)中进行测试,检验了该方法对于光照、人群密度、视角等变化的鲁棒性.实验结果表明,该方法对于以上变化具有较强的鲁棒性,并且相比于之前的人群计数方法在准确性和稳定性方面具有更好的性能. 展开更多
关键词 人群计数 优化Inception-ResNet-A模块 GRADIENT BOOSTING 多尺度特征 感知野
下载PDF
基于单列深度时空卷积神经网络的人群计数 被引量:7
13
作者 鱼春燕 徐岩 +1 位作者 缑丽莎 南哲锋 《激光与光电子学进展》 CSCD 北大核心 2021年第8期135-143,共9页
突发性人群聚集会给人们的人身安全带来隐患,因此,对高风险区域进行有效的人群计数具有重要意义。针对多列神经网络结构臃肿、冗余信息多及耗时长等问题,提出了一种基于单列深度时空卷积神经网络的人群计数模型,并对模型进行改进,以满... 突发性人群聚集会给人们的人身安全带来隐患,因此,对高风险区域进行有效的人群计数具有重要意义。针对多列神经网络结构臃肿、冗余信息多及耗时长等问题,提出了一种基于单列深度时空卷积神经网络的人群计数模型,并对模型进行改进,以满足视频图像计数的需要。首先,在全卷积神经网络(FCN)中加入空洞卷积和跳级连接特征融合,以提高网络提取特征的能力。然后,为了减少视频监控产生的角度畸变对计数结果的影响,在长短期记忆(LSTM)网络结构中加入空间变换模块;为了提高网络计数结果的精确性,用残差连接方式连接改进的FCN和关联时序的LSTM网络。最后,在UCSD、Mall和自建人群数据集上分别进行测试,结果表明,相比其他模型,本模型的人群计数准确性和鲁棒性更好。 展开更多
关键词 图像处理 神经网络 人群计数 深度时空网络 空洞卷积 空间变换
原文传递
基于单列多尺度卷积神经网络的人群计数 被引量:7
14
作者 彭贤 彭玉旭 +1 位作者 汤强 宋砚琪 《计算机科学》 CSCD 北大核心 2020年第4期150-156,共7页
单张图片和监控视频中的人群计数问题在近年来受到了越来越多的关注。尺度的变化和人群遮挡等问题,导致人群计数是一项十分具有挑战性的任务,但是深度卷积神经网络被证明能有效地解决这一问题。文中提出了一种单列多尺度的卷积神经网络... 单张图片和监控视频中的人群计数问题在近年来受到了越来越多的关注。尺度的变化和人群遮挡等问题,导致人群计数是一项十分具有挑战性的任务,但是深度卷积神经网络被证明能有效地解决这一问题。文中提出了一种单列多尺度的卷积神经网络,该网络提供了一种数据驱动的深度学习方法,能够理解各种不同的场景,并能进行精确的计数估计。该网络模型主要由作为二维特征提取的前端与中端,和用来还原密度图的后端组成。其中,使用堆叠池代替最大池化层,在不引入额外参数的前提下增加了模型的尺度不变性。网络模型前端采用部分VGG-16结构;中端采用FME(特征聚合模块),用来打破不同列之间的独立,以更好地提取多尺度特征信息;后端采用3列5层的不同扩张率的空洞卷积,在保持分辨率不变的情况下增加感受野,生成更高质量的人群密度图,并引入一种相对人数损失,以提升稀疏密度人群情况下模型的性能。该模型在两个最具挑战性的人群计数数据集上都取得了很好的效果。实验结果表明,在公开人群计数数据集ShanghaiTech的两个子集和UCF_CC_50上,该方法的平均绝对误差(MAE)和均方误差(MSE)分别是66.2和103.0、8.7和13.4、251.0和329.5,性能比传统人群计数方法更好。与其他模型相比,该模型拥有更高的精度和更好的鲁棒性,对稀疏人数图像有着更好的计数效果。 展开更多
关键词 卷积神经网络 人群计数 堆叠池 空洞卷积 特征聚合 相对人数损失
下载PDF
基于尺度自适应卷积神经网络的人群计数算法 被引量:7
15
作者 翟强 王陆洋 +2 位作者 殷保群 彭思凡 邢思思 《计算机工程》 CAS CSCD 北大核心 2020年第2期250-254,261,共6页
为解决单幅图像中的人群遮挡和尺度变化问题,提出一种基于多列卷积神经网络的人群计数算法。利用具有不同尺寸感受野的卷积神经网络(CNN)和特征注意力模块自适应提取多尺度人群特征,引入可变形卷积增强CNN网络空间几何形变学习能力并优... 为解决单幅图像中的人群遮挡和尺度变化问题,提出一种基于多列卷积神经网络的人群计数算法。利用具有不同尺寸感受野的卷积神经网络(CNN)和特征注意力模块自适应提取多尺度人群特征,引入可变形卷积增强CNN网络空间几何形变学习能力并优化特征图,从而生成高质量的密度图。Shanghai Tech和UCF_CC_50数据集上的实验结果表明,该算法能学习输入图和人群密度图之间的映射关系,且计数准确性高、鲁棒性强。 展开更多
关键词 人群计数 卷积神经网络 可变形卷积 特征图 密度图
下载PDF
基于图像视野划分的公共场所人群计数模型 被引量:7
16
作者 袁健 王姗姗 罗英伟 《计算机应用研究》 CSCD 北大核心 2021年第4期1256-1260,1280,共6页
为解决公共场所中人群分布不均以及目标尺度不一而影响人数估计的问题,提出了基于图像视野划分的公共场所人群计数模型。首先将图像场景划分为远近视野两个区域,对近视野区域,使用基于YOLO的网络进行行人检测并通过添加场景约束避免在... 为解决公共场所中人群分布不均以及目标尺度不一而影响人数估计的问题,提出了基于图像视野划分的公共场所人群计数模型。首先将图像场景划分为远近视野两个区域,对近视野区域,使用基于YOLO的网络进行行人检测并通过添加场景约束避免在远近视野区域内重复计数;对远视野区域,使用改进的MobileNets提取人群密度分布特征,并引入超分辨率重建模块提升人群密度图质量,最终通过计算两者之和得到整幅图像中的人群数量。在Shanghai Tech和Mall数据集上进行测试,结果表明该模型在准确性和鲁棒性上有显著的提高,实验证明模型切实可行。 展开更多
关键词 人数估计 卷积神经网络 图像视野划分 轻量型
下载PDF
铁路车站旅客密度自适应场景估计与应用研究 被引量:7
17
作者 李瑞 李平 +1 位作者 王万齐 代明睿 《铁道运输与经济》 北大核心 2021年第11期19-26,共8页
为提升车站旅客引导服务效率,提高车站智能化服务水平,深入研究车站旅客人群密度估计,针对铁路车站人群密度差异大、分布不均匀的场景特殊性,构建基于深度神经网络的自适应场景人群密度估计模型,通过引入注意力机制处理模块,不同尺寸人... 为提升车站旅客引导服务效率,提高车站智能化服务水平,深入研究车站旅客人群密度估计,针对铁路车站人群密度差异大、分布不均匀的场景特殊性,构建基于深度神经网络的自适应场景人群密度估计模型,通过引入注意力机制处理模块,不同尺寸人群图像的识别模块和自适应场景权重判断模块,实现了车站不同场景下的人群密度估计。以清河站为试验场景,对现场采集视频图像样本进行训练学习和验证,准确率达到92%以上,验证了方法的可行性和有效性,该研究成果可为铁路车站图像智能化处理提供借鉴和指导。 展开更多
关键词 场景自适应 深度学习 人流密度 注意力机制 铁路车站
下载PDF
基于卷积神经网络和密度分布特征的人数统计方法 被引量:7
18
作者 郭继昌 李翔鹏 《电子科技大学学报》 EI CAS CSCD 北大核心 2018年第6期806-813,共8页
在行人监控视频中,由于行人遮挡、场景光照变化,人群分布不均等因素的影响使得现有方法难以准确统计视频中人数。针对该问题,提出一种基于卷积神经网络和密度分布特征的人数统计方法。该方法首先将场景中的人群依据密度进行划分;对稀疏... 在行人监控视频中,由于行人遮挡、场景光照变化,人群分布不均等因素的影响使得现有方法难以准确统计视频中人数。针对该问题,提出一种基于卷积神经网络和密度分布特征的人数统计方法。该方法首先将场景中的人群依据密度进行划分;对稀疏人群,使用Retinex算法将场景去噪后转换至HSV空间中对行人位置进行预判,并使用栅极损失函数分块训练卷积神经网络提取行人特征,实现对遮挡行人局部位置的识别;对密集人群,提取人群密度分布特征并使用多核回归函数估计人群数量。该算法在PETS2009、UCSD等数据集上进行了测试,实验结果表明所提算法具有更好的统计精度。 展开更多
关键词 Caffe 卷积神经网络 人数统计 密度分布特征
下载PDF
人群计数研究综述 被引量:7
19
作者 卢振坤 刘胜 +2 位作者 钟乐 刘绍航 张甜 《计算机工程与应用》 CSCD 北大核心 2022年第11期33-46,共14页
人群计数广泛应用在公共安防、视频监控和智慧城市建设等领域,对控制特定场所人数、指挥公共交通、防止疫情蔓延、保障社会稳定具有重要积极意义。传统的计数方法精度不高、场景受限,随着深度学习的发展,传统方法逐渐被卷积神经网络(con... 人群计数广泛应用在公共安防、视频监控和智慧城市建设等领域,对控制特定场所人数、指挥公共交通、防止疫情蔓延、保障社会稳定具有重要积极意义。传统的计数方法精度不高、场景受限,随着深度学习的发展,传统方法逐渐被卷积神经网络(convolutional neural network,CNN)方法代替。介绍了人群计数的研究背景、现状和发展趋势,叙述了两种传统方法;从计数精度、网络结构、评价指标和数据集等方面重点分析了CNN方法,发现CNN技术可以有效解决多尺度和跨场景等问题;阐述了基于Vision Transformer(ViT)序列的弱监督计数方法并且对比各类方法。对未来人群计数的研究前景做出展望。 展开更多
关键词 人群计数 卷积神经网络 VisionTransformer(ViT)序列 密度估计
下载PDF
基于多尺度多任务卷积神经网络的人群计数 被引量:7
20
作者 曹金梦 倪蓉蓉 杨彪 《计算机应用》 CSCD 北大核心 2019年第1期199-204,共6页
在智能监控领域,实现人群计数具有重要价值,针对人群尺度不一、人群密度分布不均及遮挡等问题,提出一种多尺度多任务卷积神经网络(MMCNN)进行人群计数的方法。首先提出一种新颖的自适应人形核生成密度图描述人群信息,消除人群遮挡影响;... 在智能监控领域,实现人群计数具有重要价值,针对人群尺度不一、人群密度分布不均及遮挡等问题,提出一种多尺度多任务卷积神经网络(MMCNN)进行人群计数的方法。首先提出一种新颖的自适应人形核生成密度图描述人群信息,消除人群遮挡影响;其次通过构建多尺度卷积神经网络解决人群尺度不一问题,以多任务学习机制同时估计密度图及人群密度等级,解决人群分布不均问题;最后设计一种加权损失函数,提高人群计数准确率。在UCF_CC_50和World Expo'10数据库上进行了评估,验证了自适应人形核的有效性。实验结果表明:所提算法比Sindagi等的方法 (SINDAGI V A,PATEL V M. CNN-based cascaded multi-task learning of high-level prior and density estimation for crowd counting. Proceedings of the 2017 14th IEEE International Conference on Advanced Video and Signal Based Surveillance. Piscataway,NJ:IEEE,2017:1-6)在UCF_CC_50数据库上平均绝对误差(MAE)数值和均方误差(MSE)数值分别降低约1. 7和45;与Zhang等的方法(ZHANG Y,ZHOU D,CHEN S,et al. Single-image crowd counting via multi-column convolutional neural network. Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Washington,DC:IEEE Computer Society,2016:589-597)相比,在World Expo'10数据库上所提算法的MAE值降低约1. 5,且在真实公共汽车数据库上仅0~3人的计数误差,表明其实用性较强。 展开更多
关键词 人群计数 多尺度 多任务学习 卷积神经网络 自适应人形核 加权损失函数
下载PDF
上一页 1 2 8 下一页 到第
使用帮助 返回顶部