A maize (Zea mays L.) genome_specific repeated DNA sequence (clone MR64) has been transferred into one DH line of wheat through wheat (Triticum persicum Vav. ex Zhuk.) and maize cross. In the present study by RFLP ana...A maize (Zea mays L.) genome_specific repeated DNA sequence (clone MR64) has been transferred into one DH line of wheat through wheat (Triticum persicum Vav. ex Zhuk.) and maize cross. In the present study by RFLP analysis the authors proved that this DNA sequence could stably transmit into DH3 plants, the next generation derived from DH2 self_crossing. A similarity search in all DNA databases using BLASTN program showed that the DNA sequence of MR64 had as high as 93% identity to PREM_2 and 79% to Opie_2 in nucleotides. Both PREM_2 and Opie_2 are known as retrotransposons in maize genome, suggesting that MR64 likely is the partial sequence of a maize retrotransposon. Therefore, the results indicate that some retrotransposon might involve the DNA introgression from maize to wheat genome through wide fertilization. Stable inheritance of this maize genome_specific retrotransposon_like DNA in the wheat genome opens up the possibility of using retrotransposon as a new tool for gene tagging, function analysis, and insertional mutagenesis in wheat genome.展开更多
Groundnut(Arachis hypogaea L.)is widely grown and consumed around the world and is considered to have originated from a single hybridization event between two wild diploids.The utilization of wild germplasm in breedin...Groundnut(Arachis hypogaea L.)is widely grown and consumed around the world and is considered to have originated from a single hybridization event between two wild diploids.The utilization of wild germplasm in breeding programs has been restricted by reproductive barriers between wild and cultivated species and technical difficulties in making large numbers of crosses.Efforts to overcome these hurdles have resulted in the development of synthetic amphidiploids,namely ISATGR 278-18(Arachis duranesis×Arachis batizocoi)and ISATGR 5B(Arachis magna×A.batizocoi),which possess several desirable traits,including resistance to foliar diseases that generally cause huge yield losses annually in groundnut growing areas of Asia,America,and Africa.With an objective to improve foliar disease resistance,the primary gene pool was diversified by introgressing foliar disease resistance in five cultivated genotypes(ICGV 91114,ICGS 76,ICGV 91278,JL 24,and DH 86)from synthetic amphidiploids using a backcross breeding approach.Several introgression lines with resistance to two foliar diseases(rust and late leaf spot)were identified with levels of resistance equal to the donors.These backcross derived lines have shown a wide range of variation for several morphological and agronomic traits.These lines,after further evaluation and selection,can serve as donors in future breeding programs aimed atdeveloping improved cultivars with desirable agronomic traits,high resilience to biotic/abiotic stresses and a broadened genetic base.展开更多
There is no spontaneous chromosome doubling in haploid plants produced by wheat X maize crossing. In order to obtain doubled haploid, two chromosome doubling methods were used. Results showed that: After adding colchi...There is no spontaneous chromosome doubling in haploid plants produced by wheat X maize crossing. In order to obtain doubled haploid, two chromosome doubling methods were used. Results showed that: After adding colchicine solution directly into a medium for young embryos that had been cultured 7 days, frequencies of embryo germination in colchicine concentrations of 50mg/L, 100mg/L and 200mg/L were 32.1% , 26.4% and 16.3% , respectively, and frequencies of chromosome doubling were 85.3% , 100% and 50.0% , respectively. But in the control without colchicine, the frequency of embryo germination was 67.4% and no seed was setting. As the time of colchicine treatment increased from 24 to 72 hours, the frequency of embryo germination was reduced, and 24 hours had better results. After soaking seeding crowns and roots with colchicine solution of 500mg/L, 750mg/L and 1 000mg/L for 5 hours, the frequencies of doubling were 89.6%, 76.0% and 73.3%, respectively. By soaking crowns and roots of strong seedings with 500mg/L colchicine solution, the frequency and efficiency of doubling were 98.2% and 93.2% , respectively.展开更多
This study was conducted in two stages, in 2006 the formation of cross, in the experimental field of the Universidad Autonoma Agraria Antonio Narro Unidad Laguna (UAAANUL), and the evaluation of the same in 2007;at tw...This study was conducted in two stages, in 2006 the formation of cross, in the experimental field of the Universidad Autonoma Agraria Antonio Narro Unidad Laguna (UAAANUL), and the evaluation of the same in 2007;at two locations with three environments, a locality was the experimental field of UAAANUL during spring and summer cycles and another location was the Niagara, Municipality of Aguascalientes, during the spring cycle. The genetic material used consisted of three groups of lines: the first group formed by four lines from the UAAANUL, the second group, two lines from INIFAP, and the third group, 10 lines of the International Center for Maize Improvement and Wheat (CIMMYT). The main objective was to estimate the effects of general combining ability (GCA) of the lines, and the specific combining ability (SCA) of their crosses and heterosis, to estimate its use in a breeding program. Estimates of general combining ability (GCA) and specific combining ability (SCA) were obtained using an analysis of line x line. To forage yield (FY), B-40 (16.84 t·ha-1) and AN-447 (1.54 t·ha-1) and to grain yield (GY), AN-388R (2.31 t·ha-1) had the greatest effect of GCA in both types of yield. The greatest effects of SCA for (FY) were cross AN-447XCML-264 (17.56 t·ha-1) and AN-388RXCML-319 (16.54 t·ha-1), in (GY) were cross AN-447XCML-315 (1.94 t·ha-1) and B-40XCML-319 (1.78 t·ha-1). For heterosis, higher value in forage yield was cross AN-447XCML-264 (20.7%), in grain yield, were B-40XCML-319 (27.1%) and B-32XCML-319 (22.1%) crosses. These results show that it is possible to structure a hybrid program using best lines from CIMMYT, INIFAP and UAAANUL.展开更多
Zinc (Zn (II) HEDTA) was used to determine their effect on salt-induced damages in maize plants. The aim of this study was to investigate the antioxidant capacity and the levels of enhanced total phenolic (TPC), total...Zinc (Zn (II) HEDTA) was used to determine their effect on salt-induced damages in maize plants. The aim of this study was to investigate the antioxidant capacity and the levels of enhanced total phenolic (TPC), total flavonoid (TFC) contents and their antioxidant activity in leaves of two maize cultivars Single cross 10 (SC10) and Single cross 162 (SC162) grown in two levels of salinity 0.00 and 100 mmol in response to 20 μmol Zn (II) HEDTA foliar spray treatments. Significant differences (P ≤ 0.05) in amounts of TPC ranged from (2.55 to 4.62 mg/gdw as Gallic) in Single cross 10 (SC10) and from (2.53 to 4.38 mg/gdw as Gallic) in Single cross 162 (SC162), TFC (ranged 1.53 to 2.41 mg/gdw as qurestien) in Single cross 10 (SC10) and from (1.28 to 2.41 mg/gdw as qurestien) in Single cross 162 (SC162) among all treated plants were observed. The levels of their compounds increase related to foliar spraying of Zn (II) HEDTA. A significant positive correlation between TPC, TFC and DPPH scavenging activity and iron chelating activity was observed which shows that phenolic compounds were involved in the mechanism of salt tolerance of the two cultivars by showing enhanced antioxidant activity which resulted in reduced membrane damage and hence improved growth. According to the results obtained, the adverse effects of salt stress on maize plants can partly be alleviated with application of Zn (II)-HEDTA chelates. It is concluded that the application of Zn (II) HEDTA to maize plants grown in salt conditions leads to the increase of antioxidant compounds and maize tolerance.展开更多
Diploid hybrid derived from dihaploid Neo-tuberosum × Solanum phurejaand progeny of the diploid hybrid backcrossed to dihaploid Neo-tuberosum,which could produce 2n pollen, were crossed as male to S.tuberosumssp....Diploid hybrid derived from dihaploid Neo-tuberosum × Solanum phurejaand progeny of the diploid hybrid backcrossed to dihaploid Neo-tuberosum,which could produce 2n pollen, were crossed as male to S.tuberosumssp. tubersumc.v. NEA303. The performance of the 4x hybrids obtained from 4x × 2x cross was investigated for yield and yield components in the first year clonal generation. The 4x hybrids shown a drastic heterosis in plant height. Marketable yield/plant for the 4x hybrid was no better than that for the 4x cultivar, but the best hybrid individual of the two hybrid populations exceeded the best individual of the cultivar by 260 g/plant and 60 g/plant, respectively. Total yield/plant for the 4x hybrids performed drastic heterosis, however tuber number/plant was high and mean tuber weight low. These limit the use of 4x × 2x hybrids in potato breeding programs and need to be improved in near future.展开更多
The hybrid cotton varieties of Hanza 160 and Hanza 1692 were bred by reciprocal crosses between Han 5158 and Han 333 in Hainan and Hebei for several years. Both varieties had the characters of high yield, high quality...The hybrid cotton varieties of Hanza 160 and Hanza 1692 were bred by reciprocal crosses between Han 5158 and Han 333 in Hainan and Hebei for several years. Both varieties had the characters of high yield, high quality and disease resistance. Hanza 160 and Hanza 1692 were approved by Hebei Crop Variety Approval Committee in 2013 and 2016, respectively.展开更多
The F2, F3, families and F4 lines of six soybean crosses, were selected successively under high-and low - fertility sites with the relection objective of high yield and the method of pedigree was used. Two best F4 - d...The F2, F3, families and F4 lines of six soybean crosses, were selected successively under high-and low - fertility sites with the relection objective of high yield and the method of pedigree was used. Two best F4 - derived lines were chosen from each of the six crosses under both high-and low-fertility for use in this study. In 1995, the total 24 lines were tested in high, medium and low fertility sites with the same experimental design (CRB) to study the selcctoin effects of high and low - fertility. The results suggested that high- and low-fertility had different selection effects. High fertility was more effective for selecting lines, which had higher yield under high-fertility and lower yield under low-fertility; low-fertility was better for selecting lines, which had higher yield under low-fertility and lower yield under low-fertility, and high fertility was somewhat better than low fertility for selecting lines, which had higher yield under both high and low-fertility. It revealed that the lines selected from high-fertility had superior yield potential. The lines selected from high-fertility had shorter plant height, more nodes on main stem, fewer branches, higher seed-stem ratio. The reverse was true for the lines selected from low-fertility . The lodging-resistance of the lines selected from highfertility was greater than that of the lines from low-fertility. The soil fertility level of breeding nursery should be chosen according to the breeding objective.展开更多
Generation of genetic diversity is necessary in improving on the potential of cassava when faced with various biotic and abiotic challenges. Presently, cassava breeders are breeding for a number of traits, such as dro...Generation of genetic diversity is necessary in improving on the potential of cassava when faced with various biotic and abiotic challenges. Presently, cassava breeders are breeding for a number of traits, such as drought tolerance, early root bulking, yield, starch, beta-carotene, protein, dry matter, pest and disease resistance, by relying on genetic diversity that exists in manihot esculenta germplasm. Controlled pollination is one of the main methods used to generate genetic diversity in cassava. However, the process of controlled pollination especially in an open field is prone to contamination by illegitimate pollen right from the time of pollination, seed collection, nursery bed establishment to planting of the trials. Therefore, authentication of the progeny obtained from cassava crosses is very important for genetic studies. Twelve informative microsatellite markers were used to verify the authenticity of 364 F1 progeny thought to come from four controlled parental crosses. The transmission of each allele at nine microsatellite loci was tracked from parents to progeny in each of the four Namikonga-derived F1 cassava families. Out of the 364 F1 progeny, 317 (87.1%) were true-to-type, 44 (12.1%) were a product of self-pollination and 3 (0.8%) were a product of open pollination. The consistency of the results obtained using microsatellite markers makes this technique a reliable tool for assessing the purity of progeny generated from cassava crosses.展开更多
文摘A maize (Zea mays L.) genome_specific repeated DNA sequence (clone MR64) has been transferred into one DH line of wheat through wheat (Triticum persicum Vav. ex Zhuk.) and maize cross. In the present study by RFLP analysis the authors proved that this DNA sequence could stably transmit into DH3 plants, the next generation derived from DH2 self_crossing. A similarity search in all DNA databases using BLASTN program showed that the DNA sequence of MR64 had as high as 93% identity to PREM_2 and 79% to Opie_2 in nucleotides. Both PREM_2 and Opie_2 are known as retrotransposons in maize genome, suggesting that MR64 likely is the partial sequence of a maize retrotransposon. Therefore, the results indicate that some retrotransposon might involve the DNA introgression from maize to wheat genome through wide fertilization. Stable inheritance of this maize genome_specific retrotransposon_like DNA in the wheat genome opens up the possibility of using retrotransposon as a new tool for gene tagging, function analysis, and insertional mutagenesis in wheat genome.
基金research projects sponsored by the Department of Biotechnology(DBT),Government of India,to UAS-Dharwad and ICRISAthe CGIAR Research Program on Grain Legumes
文摘Groundnut(Arachis hypogaea L.)is widely grown and consumed around the world and is considered to have originated from a single hybridization event between two wild diploids.The utilization of wild germplasm in breeding programs has been restricted by reproductive barriers between wild and cultivated species and technical difficulties in making large numbers of crosses.Efforts to overcome these hurdles have resulted in the development of synthetic amphidiploids,namely ISATGR 278-18(Arachis duranesis×Arachis batizocoi)and ISATGR 5B(Arachis magna×A.batizocoi),which possess several desirable traits,including resistance to foliar diseases that generally cause huge yield losses annually in groundnut growing areas of Asia,America,and Africa.With an objective to improve foliar disease resistance,the primary gene pool was diversified by introgressing foliar disease resistance in five cultivated genotypes(ICGV 91114,ICGS 76,ICGV 91278,JL 24,and DH 86)from synthetic amphidiploids using a backcross breeding approach.Several introgression lines with resistance to two foliar diseases(rust and late leaf spot)were identified with levels of resistance equal to the donors.These backcross derived lines have shown a wide range of variation for several morphological and agronomic traits.These lines,after further evaluation and selection,can serve as donors in future breeding programs aimed atdeveloping improved cultivars with desirable agronomic traits,high resilience to biotic/abiotic stresses and a broadened genetic base.
基金supported by the Beijing Nature Science Foundation(5982011).
文摘There is no spontaneous chromosome doubling in haploid plants produced by wheat X maize crossing. In order to obtain doubled haploid, two chromosome doubling methods were used. Results showed that: After adding colchicine solution directly into a medium for young embryos that had been cultured 7 days, frequencies of embryo germination in colchicine concentrations of 50mg/L, 100mg/L and 200mg/L were 32.1% , 26.4% and 16.3% , respectively, and frequencies of chromosome doubling were 85.3% , 100% and 50.0% , respectively. But in the control without colchicine, the frequency of embryo germination was 67.4% and no seed was setting. As the time of colchicine treatment increased from 24 to 72 hours, the frequency of embryo germination was reduced, and 24 hours had better results. After soaking seeding crowns and roots with colchicine solution of 500mg/L, 750mg/L and 1 000mg/L for 5 hours, the frequencies of doubling were 89.6%, 76.0% and 73.3%, respectively. By soaking crowns and roots of strong seedings with 500mg/L colchicine solution, the frequency and efficiency of doubling were 98.2% and 93.2% , respectively.
文摘This study was conducted in two stages, in 2006 the formation of cross, in the experimental field of the Universidad Autonoma Agraria Antonio Narro Unidad Laguna (UAAANUL), and the evaluation of the same in 2007;at two locations with three environments, a locality was the experimental field of UAAANUL during spring and summer cycles and another location was the Niagara, Municipality of Aguascalientes, during the spring cycle. The genetic material used consisted of three groups of lines: the first group formed by four lines from the UAAANUL, the second group, two lines from INIFAP, and the third group, 10 lines of the International Center for Maize Improvement and Wheat (CIMMYT). The main objective was to estimate the effects of general combining ability (GCA) of the lines, and the specific combining ability (SCA) of their crosses and heterosis, to estimate its use in a breeding program. Estimates of general combining ability (GCA) and specific combining ability (SCA) were obtained using an analysis of line x line. To forage yield (FY), B-40 (16.84 t·ha-1) and AN-447 (1.54 t·ha-1) and to grain yield (GY), AN-388R (2.31 t·ha-1) had the greatest effect of GCA in both types of yield. The greatest effects of SCA for (FY) were cross AN-447XCML-264 (17.56 t·ha-1) and AN-388RXCML-319 (16.54 t·ha-1), in (GY) were cross AN-447XCML-315 (1.94 t·ha-1) and B-40XCML-319 (1.78 t·ha-1). For heterosis, higher value in forage yield was cross AN-447XCML-264 (20.7%), in grain yield, were B-40XCML-319 (27.1%) and B-32XCML-319 (22.1%) crosses. These results show that it is possible to structure a hybrid program using best lines from CIMMYT, INIFAP and UAAANUL.
文摘Zinc (Zn (II) HEDTA) was used to determine their effect on salt-induced damages in maize plants. The aim of this study was to investigate the antioxidant capacity and the levels of enhanced total phenolic (TPC), total flavonoid (TFC) contents and their antioxidant activity in leaves of two maize cultivars Single cross 10 (SC10) and Single cross 162 (SC162) grown in two levels of salinity 0.00 and 100 mmol in response to 20 μmol Zn (II) HEDTA foliar spray treatments. Significant differences (P ≤ 0.05) in amounts of TPC ranged from (2.55 to 4.62 mg/gdw as Gallic) in Single cross 10 (SC10) and from (2.53 to 4.38 mg/gdw as Gallic) in Single cross 162 (SC162), TFC (ranged 1.53 to 2.41 mg/gdw as qurestien) in Single cross 10 (SC10) and from (1.28 to 2.41 mg/gdw as qurestien) in Single cross 162 (SC162) among all treated plants were observed. The levels of their compounds increase related to foliar spraying of Zn (II) HEDTA. A significant positive correlation between TPC, TFC and DPPH scavenging activity and iron chelating activity was observed which shows that phenolic compounds were involved in the mechanism of salt tolerance of the two cultivars by showing enhanced antioxidant activity which resulted in reduced membrane damage and hence improved growth. According to the results obtained, the adverse effects of salt stress on maize plants can partly be alleviated with application of Zn (II)-HEDTA chelates. It is concluded that the application of Zn (II) HEDTA to maize plants grown in salt conditions leads to the increase of antioxidant compounds and maize tolerance.
文摘Diploid hybrid derived from dihaploid Neo-tuberosum × Solanum phurejaand progeny of the diploid hybrid backcrossed to dihaploid Neo-tuberosum,which could produce 2n pollen, were crossed as male to S.tuberosumssp. tubersumc.v. NEA303. The performance of the 4x hybrids obtained from 4x × 2x cross was investigated for yield and yield components in the first year clonal generation. The 4x hybrids shown a drastic heterosis in plant height. Marketable yield/plant for the 4x hybrid was no better than that for the 4x cultivar, but the best hybrid individual of the two hybrid populations exceeded the best individual of the cultivar by 260 g/plant and 60 g/plant, respectively. Total yield/plant for the 4x hybrids performed drastic heterosis, however tuber number/plant was high and mean tuber weight low. These limit the use of 4x × 2x hybrids in potato breeding programs and need to be improved in near future.
基金Supported by the Key Technology R&D Program of Hebei Province(16226307D-4)
文摘The hybrid cotton varieties of Hanza 160 and Hanza 1692 were bred by reciprocal crosses between Han 5158 and Han 333 in Hainan and Hebei for several years. Both varieties had the characters of high yield, high quality and disease resistance. Hanza 160 and Hanza 1692 were approved by Hebei Crop Variety Approval Committee in 2013 and 2016, respectively.
文摘The F2, F3, families and F4 lines of six soybean crosses, were selected successively under high-and low - fertility sites with the relection objective of high yield and the method of pedigree was used. Two best F4 - derived lines were chosen from each of the six crosses under both high-and low-fertility for use in this study. In 1995, the total 24 lines were tested in high, medium and low fertility sites with the same experimental design (CRB) to study the selcctoin effects of high and low - fertility. The results suggested that high- and low-fertility had different selection effects. High fertility was more effective for selecting lines, which had higher yield under high-fertility and lower yield under low-fertility; low-fertility was better for selecting lines, which had higher yield under low-fertility and lower yield under low-fertility, and high fertility was somewhat better than low fertility for selecting lines, which had higher yield under both high and low-fertility. It revealed that the lines selected from high-fertility had superior yield potential. The lines selected from high-fertility had shorter plant height, more nodes on main stem, fewer branches, higher seed-stem ratio. The reverse was true for the lines selected from low-fertility . The lodging-resistance of the lines selected from highfertility was greater than that of the lines from low-fertility. The soil fertility level of breeding nursery should be chosen according to the breeding objective.
文摘Generation of genetic diversity is necessary in improving on the potential of cassava when faced with various biotic and abiotic challenges. Presently, cassava breeders are breeding for a number of traits, such as drought tolerance, early root bulking, yield, starch, beta-carotene, protein, dry matter, pest and disease resistance, by relying on genetic diversity that exists in manihot esculenta germplasm. Controlled pollination is one of the main methods used to generate genetic diversity in cassava. However, the process of controlled pollination especially in an open field is prone to contamination by illegitimate pollen right from the time of pollination, seed collection, nursery bed establishment to planting of the trials. Therefore, authentication of the progeny obtained from cassava crosses is very important for genetic studies. Twelve informative microsatellite markers were used to verify the authenticity of 364 F1 progeny thought to come from four controlled parental crosses. The transmission of each allele at nine microsatellite loci was tracked from parents to progeny in each of the four Namikonga-derived F1 cassava families. Out of the 364 F1 progeny, 317 (87.1%) were true-to-type, 44 (12.1%) were a product of self-pollination and 3 (0.8%) were a product of open pollination. The consistency of the results obtained using microsatellite markers makes this technique a reliable tool for assessing the purity of progeny generated from cassava crosses.