The solution-processed method for organic light-emitting diodes(OLEDs)offers the benefits of cost-effectiveness and enhanced material utilization.In the multilayer architecture of solution-processed OLEDs(SOLEDs),the ...The solution-processed method for organic light-emitting diodes(OLEDs)offers the benefits of cost-effectiveness and enhanced material utilization.In the multilayer architecture of solution-processed OLEDs(SOLEDs),the role of hole-transport materials(HTMs)is pivotal for cascade hole injection.However,commercial HTMs such as poly-(9,9-dioctylfluorene-alt-N-(4-sec-butylphenyl)-diphenylamine)(TFB)are hampered by incompatible energy levels and redissolution with overlayer solvent,prompting the exploration of cross-linkable HTMs(X-HTMs)for better performance.In this study,we have developed two novel small-molecule X-HTMs,N^(1),N^(1)′-((perfluoropropane-2,2-diyl)bis(4,1-phenylene))bis(N^(4),N^(4)-diphenyl-N^(1)-(4-vinylphenyl)benzene-1,4-diamine)(FTPA-V)and N,N′-((perfluoropropane-2,2-diyl)bis-(4,1-phenylene))bis(9-phenyl-N-(4-vinylphenyl)-9H-carbazol-3-amine)(FPCz-V),which incorporate thermally cross-linkable vinyl groups and electron-rich trifluoromethyl units.The X-HTMs enhance interfacial contact through superior film formation and solvent resistance,along with optimal energy levels.The application of X-HTMs significantly enhances the efficiencies and longevities of blue,green,and red SOLEDs.Specially,blue SOLED incorporating FPCz-V exhibits unprecedented lifetime(LT95)extending to over 150 h,setting a new record for blue SOLEDs.The electrochemistry stability,high bond dissociation energy,and triplet energy levels of X-HTMs can effectively minimize exciton annihilation and prolong the lifetime.These findings underscore the potential of X-HTM optimization to propel the development of stable solution-processed luminescent technologies.展开更多
A novel crosslinkable water/alcohol soluble conjugated polymer PFN-C containing oxetane groups and aminoalkyl groups in the side chains has been developed and used as highly efficient electron injection and transporti...A novel crosslinkable water/alcohol soluble conjugated polymer PFN-C containing oxetane groups and aminoalkyl groups in the side chains has been developed and used as highly efficient electron injection and transporting material for polymer light-emitting diodes (PLEDs). The unique solubility in polar solvents and crosslinkable ability of PFN-C render it a good can- didate for solution processed multilayer PLEDs. It was found that PFN-C can greatly enhance the electron injection from high work-function metal cathode, due to its pendant amino groups. As a result, PLEDs with PFN-C/Al cathode exhibited compara- ble device performance to the devices with Ba/Al cathode. The resulting green light-emitting device showed promising perfor- mance with a maximum luminance efficiency of 13.53 cd A-1.展开更多
In situ cross-linking encapsulation has been demonstrated to be an efficient strategy for enhancing the humidity stability of perovskite solar cells(PSCs).In this study,a novel cross-linkable fullerene derivative,name...In situ cross-linking encapsulation has been demonstrated to be an efficient strategy for enhancing the humidity stability of perovskite solar cells(PSCs).In this study,a novel cross-linkable fullerene derivative,namely1-(p-benzoate-(p-methylvinylbenzene)-indolino[2,3][60]fullerene(FPPS),was readily synthesized from commercially available building blocks in two steps.This FPPS was employed as an interfacial modifier on perovskite surfaces in inverted planar p-i-n PSCs.Owing to the fast interfacial charge extraction and efficient trap passivation,PSCs based on the cross-linked FPPS(C-FPPS)exhibited excellent performance.The PSCs had a top-performing power conversion efficiency(PCE)of 17.82%with negligible hysteresis,compared to the control devices without C-PFFS(16.99%).Moreover,the strong water resistance of the C-FPPS interfacial layer distinctly enhances the ambient stability of PSC devices,exhibiting a t80(the time required to reach 80%of the initial PCE)of 300 h under high-humidity conditions.This significantly surpasses the control devices,whose t80 was only 130 h.These results demonstrate that cross-linkable fullerene derivatives can be promising interfacial materials for designing high-efficiency,hysteresis-free,air-stable PSCs.展开更多
A novel cross-linkable poly(ether ether ketone ketone) alternating copolymer was synthesized by introducing thio-ether moiety to PEEKK rigid main chain. The copolymer can be processed at 628 K and be cross-linked by a...A novel cross-linkable poly(ether ether ketone ketone) alternating copolymer was synthesized by introducing thio-ether moiety to PEEKK rigid main chain. The copolymer can be processed at 628 K and be cross-linked by annealing at 653 K for 5 h. The cross-linking reaction was caused by the introduced thio-ether moiety instead of the PEEKK moiety. The cross-linked material has better mechanical properties and thermal stability that uncross-liked one. The results will give proof to the further research on controllable cross-linking PEEKK. This material is anticipated to be processed as a thermoplastic material as well as used a as thermosetting material after being cross-linked. [WT5HZ]展开更多
基金supported by the National Natural Science Foundation of China(22275003)Shenzhen Fundamental Research Program(JCYJ20200109140425347)+4 种基金the Development and Reform Commission of Shenzhen Municipality(XMHT20200106002)the Key-Area Research and Development Program of Guangdong Province(2019B010924003)Guangdong Basic and Applied Basic Research Foundation(2020B1515120030)provided by Guangdong Key Laboratory of Flexible Optoelectronic Materials and DevicesGuangdong International Science and Technology Cooperation Base of Optoelectronic Materials and Device Technology。
文摘The solution-processed method for organic light-emitting diodes(OLEDs)offers the benefits of cost-effectiveness and enhanced material utilization.In the multilayer architecture of solution-processed OLEDs(SOLEDs),the role of hole-transport materials(HTMs)is pivotal for cascade hole injection.However,commercial HTMs such as poly-(9,9-dioctylfluorene-alt-N-(4-sec-butylphenyl)-diphenylamine)(TFB)are hampered by incompatible energy levels and redissolution with overlayer solvent,prompting the exploration of cross-linkable HTMs(X-HTMs)for better performance.In this study,we have developed two novel small-molecule X-HTMs,N^(1),N^(1)′-((perfluoropropane-2,2-diyl)bis(4,1-phenylene))bis(N^(4),N^(4)-diphenyl-N^(1)-(4-vinylphenyl)benzene-1,4-diamine)(FTPA-V)and N,N′-((perfluoropropane-2,2-diyl)bis-(4,1-phenylene))bis(9-phenyl-N-(4-vinylphenyl)-9H-carbazol-3-amine)(FPCz-V),which incorporate thermally cross-linkable vinyl groups and electron-rich trifluoromethyl units.The X-HTMs enhance interfacial contact through superior film formation and solvent resistance,along with optimal energy levels.The application of X-HTMs significantly enhances the efficiencies and longevities of blue,green,and red SOLEDs.Specially,blue SOLED incorporating FPCz-V exhibits unprecedented lifetime(LT95)extending to over 150 h,setting a new record for blue SOLEDs.The electrochemistry stability,high bond dissociation energy,and triplet energy levels of X-HTMs can effectively minimize exciton annihilation and prolong the lifetime.These findings underscore the potential of X-HTM optimization to propel the development of stable solution-processed luminescent technologies.
基金financially supported by the Natural Science Foundation of China (50990065, 51010003, 51073058 & 20904011)the National Basic Research Program of China (973 Program, 2009CB623601)the Fun-damental Research Funds for the Central Universities, South China Uni-versity of Technology
文摘A novel crosslinkable water/alcohol soluble conjugated polymer PFN-C containing oxetane groups and aminoalkyl groups in the side chains has been developed and used as highly efficient electron injection and transporting material for polymer light-emitting diodes (PLEDs). The unique solubility in polar solvents and crosslinkable ability of PFN-C render it a good can- didate for solution processed multilayer PLEDs. It was found that PFN-C can greatly enhance the electron injection from high work-function metal cathode, due to its pendant amino groups. As a result, PLEDs with PFN-C/Al cathode exhibited compara- ble device performance to the devices with Ba/Al cathode. The resulting green light-emitting device showed promising perfor- mance with a maximum luminance efficiency of 13.53 cd A-1.
基金the National Natural Science Foundation of China(Nos.21721001,51572231 and 51502252)the Natural Science Foundation of Fujian Province of China(No.2016J01264)。
文摘In situ cross-linking encapsulation has been demonstrated to be an efficient strategy for enhancing the humidity stability of perovskite solar cells(PSCs).In this study,a novel cross-linkable fullerene derivative,namely1-(p-benzoate-(p-methylvinylbenzene)-indolino[2,3][60]fullerene(FPPS),was readily synthesized from commercially available building blocks in two steps.This FPPS was employed as an interfacial modifier on perovskite surfaces in inverted planar p-i-n PSCs.Owing to the fast interfacial charge extraction and efficient trap passivation,PSCs based on the cross-linked FPPS(C-FPPS)exhibited excellent performance.The PSCs had a top-performing power conversion efficiency(PCE)of 17.82%with negligible hysteresis,compared to the control devices without C-PFFS(16.99%).Moreover,the strong water resistance of the C-FPPS interfacial layer distinctly enhances the ambient stability of PSC devices,exhibiting a t80(the time required to reach 80%of the initial PCE)of 300 h under high-humidity conditions.This significantly surpasses the control devices,whose t80 was only 130 h.These results demonstrate that cross-linkable fullerene derivatives can be promising interfacial materials for designing high-efficiency,hysteresis-free,air-stable PSCs.
文摘A novel cross-linkable poly(ether ether ketone ketone) alternating copolymer was synthesized by introducing thio-ether moiety to PEEKK rigid main chain. The copolymer can be processed at 628 K and be cross-linked by annealing at 653 K for 5 h. The cross-linking reaction was caused by the introduced thio-ether moiety instead of the PEEKK moiety. The cross-linked material has better mechanical properties and thermal stability that uncross-liked one. The results will give proof to the further research on controllable cross-linking PEEKK. This material is anticipated to be processed as a thermoplastic material as well as used a as thermosetting material after being cross-linked. [WT5HZ]