路由协议能实现认知无线传感器网络(CRSN, cognitive radio sensor network)内部感知数据的有效汇聚传输,尤其是分簇路由协议能进一步降低路由选择的复杂度、提升网络可扩展性,对整体网络性能至关重要。因此,针对CRSN分簇路由协议进行...路由协议能实现认知无线传感器网络(CRSN, cognitive radio sensor network)内部感知数据的有效汇聚传输,尤其是分簇路由协议能进一步降低路由选择的复杂度、提升网络可扩展性,对整体网络性能至关重要。因此,针对CRSN分簇路由协议进行综述研究。首先,在简要介绍CRSN分簇概念和优势的基础上,阐述CRSN分簇算法设计考虑的主要因素。其次,探讨CRSN分簇路由协议设计面临的挑战及应遵循的基本设计原则。再次,系统的分析和总结CRSN分簇路由协议的研究现状。最后,指出CRSN分簇路由协议研究中亟待解决的问题及未来的研究方向。展开更多
This paper introduces an ant colony routing and wavelength assignment algorithm based on cross-layer design(CL-ACRWA),which can overcome the adverse effects of Doppler wavelength shift on data transmission in optical ...This paper introduces an ant colony routing and wavelength assignment algorithm based on cross-layer design(CL-ACRWA),which can overcome the adverse effects of Doppler wavelength shift on data transmission in optical satellite networks. Firstly, a cross-layer optimization model is built, which considers the Doppler wavelength shift, the transmission delay as well as wavelength-continuity constraint. Then an ant colony algorithm is utilized to solve the cross-layer optimization model, resulting in finding an optimal light path satisfying the above constraints for every connection request. The performance of CL-ACRWA is measured by the communication success probability, the convergence property and the transmission delay. Simulation results show that CL-ACRWA performs well in communication success probability and has good global search ability as well as fast convergence speed. Meanwhile, the transmission delay can meet the basic requirement of real-time transmission of business.展开更多
The orthogonal frequency division multiple access( OFDMA) based communication system has been considered as the main trend of next-Generation communication system. But the existing resource allocation algorithm design...The orthogonal frequency division multiple access( OFDMA) based communication system has been considered as the main trend of next-Generation communication system. But the existing resource allocation algorithm designed for such system is always with high complexity thus hard to be realized. To solve such problem with the constraints of spectrum efficiency and buffer state,a novel cross-layer resource allocation algorithm( RAA) is proposed in this paper. The goal of our RAA is to maximize the system throughput while satisfying several practical constraints,such as fairness among services,head of line( Ho L) delay and diverse quality of service( Qo S) requirements. Due to these constraints,finding the optimal solution becomes a NPhard problem. Therefore in this paper a novel method to solve such problem with acceptable complexity is proposed within following steps: firstly,based on the link state we formulate the ideal subchannel allocation strategy as a convex optimization problem,which can be efficiently solved by our proposed lagrange multiplier technique subchannel allocation( LMTSA) algorithm; secondly,according to the obtained channel allocation matrix,a power allocation algorithm based on the water-filling power allocation( WPA) idea is deployed to get the optimal power allocation matrix combining with adaptive modulation and coding( AMC); finally,through a greedy algorithm,the ultimate subchannel and power allocation matrix can be obtained based on iterative method. The simulation results illustrate that we can achieve the higher throughput and better Qo S performance than the widely-used maximum throughput( MT) algorithm and round robin( RR) algorithm.展开更多
Mobile ad hoc networks (MANETs) are a kind of very complex distributed communication systems with wireless mobile nodes that can be freely and dynamically self-organized into arbitrary and temporary network topologi...Mobile ad hoc networks (MANETs) are a kind of very complex distributed communication systems with wireless mobile nodes that can be freely and dynamically self-organized into arbitrary and temporary network topologies. MANETs inherit several limitations of wireless networks, meanwhile make new challenges arising from the specificity of MANETs, such as route failures, hidden terminals and exposed terminals. When TCP is applied in a MANET environment, a number of tough problems have to be dealt with. In this paper, a comprehensive survey on this dynamic field is given. Specifically, for the first time all factors impairing TCP performance are identified based on network protocol hierarchy, i.e., lossy wireless channel at the physical layer; excessive contention and unfair access at the MAC layer; frail routing protocol at the network layer, the MAC layer and the network layer related mobile node; unfit congestion window size at the transport layer and the transport layer related asymmetric path. How these factors degrade TCP performance is clearly explained. Then, based on how to alleviate the impact of each of these factors listed above, the existing solutions are collected as comprehensively as possible and classified into a number of categories, and their advantages and limitations are discussed. Based on the limitations of these solutions, a set of open problems for designing more robust solutions is suggested.展开更多
Ample medium access control (MAC) protocols for Ad hoc networks have been proposed. However, most oal (PHY) layer and the MAC layers. Therefore, their efficiencf them do not take into account the interactions betw...Ample medium access control (MAC) protocols for Ad hoc networks have been proposed. However, most oal (PHY) layer and the MAC layers. Therefore, their efficiencf them do not take into account the interactions between the physicy and feasibility are greatly limited. In this article, we present a novel MAC protocol for Ad hoc networks according to the idea of cross-layer design. The proposed protocol combines an MAC protocol termed dual busy tone multiple access (DBTMA) with Orthogonal frequency division multiplexing (OFDM) system in IEEE 802.1 la standard. The analysis showed that the proposed protocol provides higher throughput and is more flexible than previous MAC protocols. In addition, it can provide Quality of Service(QoS) guarantee to the packets with different delay requirements in the presence of hidden terminals.展开更多
为有效利用频谱资源,提高频谱效率,文中利用环境感知技术,设计出认知无线电跨层结构框架,提出一种新的功率控制博弈BPCG(Bandwidth and Power Control Game Algorithm)算法,研究不同用户的频谱带宽分配和功率控制,该算法在确保频谱带宽...为有效利用频谱资源,提高频谱效率,文中利用环境感知技术,设计出认知无线电跨层结构框架,提出一种新的功率控制博弈BPCG(Bandwidth and Power Control Game Algorithm)算法,研究不同用户的频谱带宽分配和功率控制,该算法在确保频谱带宽有效分配前提下,通过对用户功率的有效控制,实现网络总吞吐量的提高。仿真结果表明该算法在相同的功率消耗前提下,网络吞吐量显著提高,并随频谱带宽的增加,实现网络吞吐量的最大化。展开更多
Wireless Mesh Networks (WMNs) are vulnerable to various security threats because of their special infrastructure and communication mode, wherein insider attacks are the most challenging issue. To address this proble...Wireless Mesh Networks (WMNs) are vulnerable to various security threats because of their special infrastructure and communication mode, wherein insider attacks are the most challenging issue. To address this problem and protect innocent users from malicious attacks, it is important to encourage cooperation and deter malicious behaviors. Reputation systems constitute a major category of techniques used for managing trust in distributed networks, and they are effective in characterizing and quantifying a node's behavior for WMNs. However, conventional layered reputation mechanisms ignore several key factors of reputation in other layers; therefore, they cannot provide optimal performance and accurate malicious node identification and isolation for WMNs. In this paper, we propose a novel dynamic reputation mechanism, SLCRM, which couples reputation systems with a cross-layer design and node-security-rating classification techniques to dynamically detect and restrict insider attacks. Simulation results show that in terms of network throughput, packet delivery ratio, malicious nodes' identification, and success rates, SI_CRM imple- ments security protection against insider attacks in a more dynamic, effective, and efficient manner than the subjective logic and uncertainty-based reputation model and the familiarity-based reputation model.展开更多
文摘路由协议能实现认知无线传感器网络(CRSN, cognitive radio sensor network)内部感知数据的有效汇聚传输,尤其是分簇路由协议能进一步降低路由选择的复杂度、提升网络可扩展性,对整体网络性能至关重要。因此,针对CRSN分簇路由协议进行综述研究。首先,在简要介绍CRSN分簇概念和优势的基础上,阐述CRSN分簇算法设计考虑的主要因素。其次,探讨CRSN分簇路由协议设计面临的挑战及应遵循的基本设计原则。再次,系统的分析和总结CRSN分簇路由协议的研究现状。最后,指出CRSN分簇路由协议研究中亟待解决的问题及未来的研究方向。
基金supported by the National Natural Science Foundation of China(No.61675033,61575026,61675233)National High Technical Research and Development Program of China(No.2015AA015504)
文摘This paper introduces an ant colony routing and wavelength assignment algorithm based on cross-layer design(CL-ACRWA),which can overcome the adverse effects of Doppler wavelength shift on data transmission in optical satellite networks. Firstly, a cross-layer optimization model is built, which considers the Doppler wavelength shift, the transmission delay as well as wavelength-continuity constraint. Then an ant colony algorithm is utilized to solve the cross-layer optimization model, resulting in finding an optimal light path satisfying the above constraints for every connection request. The performance of CL-ACRWA is measured by the communication success probability, the convergence property and the transmission delay. Simulation results show that CL-ACRWA performs well in communication success probability and has good global search ability as well as fast convergence speed. Meanwhile, the transmission delay can meet the basic requirement of real-time transmission of business.
基金Sponsored by the National Natural Science Foundation of China(Grant No.61302080)the National High Technology Research and Development Program of China(Grant No.2014AA01A705)
文摘The orthogonal frequency division multiple access( OFDMA) based communication system has been considered as the main trend of next-Generation communication system. But the existing resource allocation algorithm designed for such system is always with high complexity thus hard to be realized. To solve such problem with the constraints of spectrum efficiency and buffer state,a novel cross-layer resource allocation algorithm( RAA) is proposed in this paper. The goal of our RAA is to maximize the system throughput while satisfying several practical constraints,such as fairness among services,head of line( Ho L) delay and diverse quality of service( Qo S) requirements. Due to these constraints,finding the optimal solution becomes a NPhard problem. Therefore in this paper a novel method to solve such problem with acceptable complexity is proposed within following steps: firstly,based on the link state we formulate the ideal subchannel allocation strategy as a convex optimization problem,which can be efficiently solved by our proposed lagrange multiplier technique subchannel allocation( LMTSA) algorithm; secondly,according to the obtained channel allocation matrix,a power allocation algorithm based on the water-filling power allocation( WPA) idea is deployed to get the optimal power allocation matrix combining with adaptive modulation and coding( AMC); finally,through a greedy algorithm,the ultimate subchannel and power allocation matrix can be obtained based on iterative method. The simulation results illustrate that we can achieve the higher throughput and better Qo S performance than the widely-used maximum throughput( MT) algorithm and round robin( RR) algorithm.
文摘Mobile ad hoc networks (MANETs) are a kind of very complex distributed communication systems with wireless mobile nodes that can be freely and dynamically self-organized into arbitrary and temporary network topologies. MANETs inherit several limitations of wireless networks, meanwhile make new challenges arising from the specificity of MANETs, such as route failures, hidden terminals and exposed terminals. When TCP is applied in a MANET environment, a number of tough problems have to be dealt with. In this paper, a comprehensive survey on this dynamic field is given. Specifically, for the first time all factors impairing TCP performance are identified based on network protocol hierarchy, i.e., lossy wireless channel at the physical layer; excessive contention and unfair access at the MAC layer; frail routing protocol at the network layer, the MAC layer and the network layer related mobile node; unfit congestion window size at the transport layer and the transport layer related asymmetric path. How these factors degrade TCP performance is clearly explained. Then, based on how to alleviate the impact of each of these factors listed above, the existing solutions are collected as comprehensively as possible and classified into a number of categories, and their advantages and limitations are discussed. Based on the limitations of these solutions, a set of open problems for designing more robust solutions is suggested.
基金National Natural Science Foundation of China (60507C07, 60372100).
文摘Ample medium access control (MAC) protocols for Ad hoc networks have been proposed. However, most oal (PHY) layer and the MAC layers. Therefore, their efficiencf them do not take into account the interactions between the physicy and feasibility are greatly limited. In this article, we present a novel MAC protocol for Ad hoc networks according to the idea of cross-layer design. The proposed protocol combines an MAC protocol termed dual busy tone multiple access (DBTMA) with Orthogonal frequency division multiplexing (OFDM) system in IEEE 802.1 la standard. The analysis showed that the proposed protocol provides higher throughput and is more flexible than previous MAC protocols. In addition, it can provide Quality of Service(QoS) guarantee to the packets with different delay requirements in the presence of hidden terminals.
文摘为有效利用频谱资源,提高频谱效率,文中利用环境感知技术,设计出认知无线电跨层结构框架,提出一种新的功率控制博弈BPCG(Bandwidth and Power Control Game Algorithm)算法,研究不同用户的频谱带宽分配和功率控制,该算法在确保频谱带宽有效分配前提下,通过对用户功率的有效控制,实现网络总吞吐量的提高。仿真结果表明该算法在相同的功率消耗前提下,网络吞吐量显著提高,并随频谱带宽的增加,实现网络吞吐量的最大化。
基金supported by the Program for Changjiang Scholars and Innovative Research Team in University under Grant No.IRT1078the Key Program of NSFC-Guangdong Union Foundation under Grant No.U1135002+1 种基金Major National S&T Program under Grant No.2011ZX03005-002the Fundamental Research Funds for the Central Universities under Grant No.JY10000903001
文摘Wireless Mesh Networks (WMNs) are vulnerable to various security threats because of their special infrastructure and communication mode, wherein insider attacks are the most challenging issue. To address this problem and protect innocent users from malicious attacks, it is important to encourage cooperation and deter malicious behaviors. Reputation systems constitute a major category of techniques used for managing trust in distributed networks, and they are effective in characterizing and quantifying a node's behavior for WMNs. However, conventional layered reputation mechanisms ignore several key factors of reputation in other layers; therefore, they cannot provide optimal performance and accurate malicious node identification and isolation for WMNs. In this paper, we propose a novel dynamic reputation mechanism, SLCRM, which couples reputation systems with a cross-layer design and node-security-rating classification techniques to dynamically detect and restrict insider attacks. Simulation results show that in terms of network throughput, packet delivery ratio, malicious nodes' identification, and success rates, SI_CRM imple- ments security protection against insider attacks in a more dynamic, effective, and efficient manner than the subjective logic and uncertainty-based reputation model and the familiarity-based reputation model.