期刊文献+
共找到27篇文章
< 1 2 >
每页显示 20 50 100
Multi-scale observation and cross-scale mechanistic modeling on terrestrial ecosystem carbon cycle 被引量:17
1
作者 CAO Mingkui YU Guirui LIU Jiyuan LI Kerang 《Science China Earth Sciences》 SCIE EI CAS 2005年第z1期17-32,共16页
To predict global climate change and to implement the Kyoto Protocol for stabilizing atmospheric greenhouse gases concentrations require quantifying spatio-temporal variations in the terrestrial carbon sink accurately... To predict global climate change and to implement the Kyoto Protocol for stabilizing atmospheric greenhouse gases concentrations require quantifying spatio-temporal variations in the terrestrial carbon sink accurately. During the past decade multi-scale ecological experiment and observation networks have been established using various new technologies (e.g. controlled environmental facilities, eddy covariance techniques and quantitative remote sensing), and have obtained a large amount of data about terrestrial ecosystem carbon cycle. However, uncertainties in the magnitude and spatio-temporal variations of the terrestrial carbon sink and in understanding the underlying mechanisms have not been reduced significantly. One of the major reasons is that the observations and experiments were conducted at individual scales independently, but it is the interactions of factors and processes at different scales that determine the dynamics of the terrestrial carbon sink. Since experiments and observations are always conducted at specific scales, to understand cross-scale interactions requires mechanistic analysis that is best to be achieved by mechanistic modeling. However, mechanistic ecosystem models are mainly based on data from single-scale experiments and observations and hence have no capacity to simulate mechanistic cross-scale interconnection and interactions of ecosystem processes. New-generation mechanistic ecosystem models based on new ecological theoretical framework are needed to quantify the mechanisms from micro-level fast eco-physiological responses to macro-level slow acclimation in the pattern and structure in disturbed ecosystems. Multi-scale data-model fusion is a recently emerging approach to assimilate multi-scale observational data into mechanistic, dynamic modeling, in which the structure and parameters of mechanistic models for simulating cross-scale interactions are optimized using multi-scale observational data. The models are validated and evaluated at different spatial and temporal scales and r 展开更多
关键词 global CLIMATE change TERRESTRIAL carbon sink MULTI-scale observation data-model fusion cross-scale MECHANISTIC modeling.
原文传递
基于改进YOLOv5-ResNet的海上舰船SAR图像快速检测 被引量:1
2
作者 龙昊 张思佳 +1 位作者 周晶 王冠 《宇航计测技术》 CSCD 2024年第2期52-59,共8页
在恶劣天气和海浪等自然因素的影响下,基于可见光数据进行舰船目标监测等手段往往难以有效开展,需要借助主动式微波成像卫星合成孔径雷达(SAR)进行图像解译。为了解决深度学习在处理数据集较小图像上无法准确提取特征及数据相似度较高... 在恶劣天气和海浪等自然因素的影响下,基于可见光数据进行舰船目标监测等手段往往难以有效开展,需要借助主动式微波成像卫星合成孔径雷达(SAR)进行图像解译。为了解决深度学习在处理数据集较小图像上无法准确提取特征及数据相似度较高的问题,基于YOLOv5-ResNet提出了一种跨尺度融合机制,重新定义损失函数。研究表明,识别SAR舰船目标的准确率有一定的提升:识别单目标舰船检测最高准确度达到93%,同比YOLOv5提升4%,比YOLOv5-ResNet50提升20%;在近岸舰船目标检测上,有效降低了由于数据集质量不佳、模型训练方法不当等造成误差率的非必要上升。 展开更多
关键词 合成孔径雷达图像 星载SAR图像 舰船目标检测 YOLOv5 ResNet 跨尺度融合
下载PDF
动态特征优化机制下的跨尺度红外行人检测 被引量:5
3
作者 郝帅 何田 +2 位作者 马旭 杨磊 孙思雅 《光学精密工程》 EI CAS CSCD 北大核心 2022年第19期2390-2403,共14页
针对红外行人图像中待检测目标存在多尺度及部分遮挡导致传统算法难以准确检测的问题,提出一种动态特征优化机制下的跨尺度红外行人检测算法。为解决复杂环境中行人目标特征难以有效表达进而造成目标检测精度低的问题,提出一种动态特征... 针对红外行人图像中待检测目标存在多尺度及部分遮挡导致传统算法难以准确检测的问题,提出一种动态特征优化机制下的跨尺度红外行人检测算法。为解决复杂环境中行人目标特征难以有效表达进而造成目标检测精度低的问题,提出一种动态特征优化机制,通过设计亮度感知模块及EG-Chimp优化模型在增强输入图像局部对比度的同时抑制背景信息;搭建了CSPDarkNet特征提取网络,并在其基础上构建CSFF-BiFPN特征金字塔结构以及跨尺度特征融合模块,以提高检测网络对多尺度及部分遮挡行人目标的检测精度;为进一步精确定位行人目标,引入CIOU损失函数加速网络收敛,从而提升检测性能。选取9种经典检测算法在KAIST数据集上进行对比测试,实验结果表明,本文算法能够对复杂环境中的多尺度及部分遮挡红外行人目标进行准确检测,检测精度可达90.7%,验证了所提出检测网络的优势。 展开更多
关键词 红外行人检测 跨尺度 动态特征优化 亮度感知 特征融合
下载PDF
全局-局部注意力引导的红外图像恢复算法
4
作者 刘晓朋 张涛 《红外技术》 CSCD 北大核心 2024年第7期791-801,共11页
针对真实世界的红外图像恢复算法中存在的图像模糊、纹理失真、参数过大等问题,提出了一种用于真实红外图像的全局-局部注意力引导的超分辨率重建算法。首先,设计了一种跨尺度的全局局部特征融合模块,利用多尺度卷积和Transformer并行... 针对真实世界的红外图像恢复算法中存在的图像模糊、纹理失真、参数过大等问题,提出了一种用于真实红外图像的全局-局部注意力引导的超分辨率重建算法。首先,设计了一种跨尺度的全局局部特征融合模块,利用多尺度卷积和Transformer并行融合不同尺度的信息,并通过可学习因子引导全局和局部信息的有效融合。其次,提出了一种新颖的退化算法,即域随机化退化算法,以适应真实红外场景图像的退化域。最后,设计了一种新的混合损失函数,利用权重学习和正则化惩罚来增强网络的恢复能力,同时加快收敛速度。在经典退化图像和真实场景红外图像上的测试结果表明,与现有方法相比,该算法恢复的图像纹理更逼真,边界伪影更少,同时参数总数最多可减少20%。 展开更多
关键词 域随机化退化算法 跨尺度融合 红外图像超分辨率 生成对抗网络
下载PDF
利用视角转换的跨视角影像匹配方法
5
作者 饶子昱 卢俊 +2 位作者 郭海涛 余东行 侯青峰 《地球信息科学学报》 CSCD 北大核心 2023年第2期368-379,共12页
目前遥感影像跨视角匹配技术无法直接使用大幅卫星影像进行匹配,难以满足大范围复杂场景匹配的任务需求,且依赖大规模数据集,不具备良好的泛化能力。针对上述问题,本文在质量感知模板匹配方法的基础上结合多尺度特征融合算法,提出一种... 目前遥感影像跨视角匹配技术无法直接使用大幅卫星影像进行匹配,难以满足大范围复杂场景匹配的任务需求,且依赖大规模数据集,不具备良好的泛化能力。针对上述问题,本文在质量感知模板匹配方法的基础上结合多尺度特征融合算法,提出一种基于视角转换的跨视角遥感影像匹配方法。该方法首先利用手持摄影设备采集地面多视影像,经密集匹配生成点云数据,利用主成分分析法拟合最佳地平面并进行投影变换,以实现地面侧视视角到空视视角的转换;然后设计了特征融合模块对VGG19网络从遥感影像中提取的低、中、高尺度特征进行融合,以获取遥感影像丰富的空间信息和语义信息;最后利用质量感知模板匹配方法将从视角转换后的地面影像上提取的特征与遥感影像的融合特征进行匹配,获取匹配的软排名结果,并采用非极大值抑制算法从中筛选出高质量的匹配结果。实验结果表明,在不需要大规模数据集的情况下本文方法具有较高的准确性和较强的泛化能力,平均匹配成功率为64.6%,平均中心点偏移量为5.9像素,匹配结果准确完整,可为大场景跨视角影像匹配任务提供一种新的解决方案。 展开更多
关键词 遥感影像 跨视角匹配 视角转换 多尺度特征 特征融合 模板匹配 泛化性
原文传递
跨尺度代价聚合网络
6
作者 黄怡洁 周佩 +1 位作者 朱江平 张建伟 《现代计算机》 2021年第8期8-13,共6页
弱纹理区域由于包含信息少,且在代价聚合网络使用3D卷积计算消耗大,提出跨尺度代价聚合网络。特征提取网络使用残差网络结合注意力机制模块提取多尺度特征,构建多尺度匹配代价集,再将匹配代价集分别进行采样融合生成低分辨率视差图,最... 弱纹理区域由于包含信息少,且在代价聚合网络使用3D卷积计算消耗大,提出跨尺度代价聚合网络。特征提取网络使用残差网络结合注意力机制模块提取多尺度特征,构建多尺度匹配代价集,再将匹配代价集分别进行采样融合生成低分辨率视差图,最后经过优化层得到高精度的视差图。该算法在KITTI数据集上进行评估,整个图像区域的匹配精度(D1-all)和速度上均取得较好的结果。 展开更多
关键词 立体匹配 跨尺度 代价聚合 多尺度融合
下载PDF
基于Swin Transformer的YOLOv5安全帽佩戴检测方法 被引量:12
7
作者 郑楚伟 林辉 《计算机测量与控制》 2023年第3期15-21,共7页
针对目前施工现场的安全帽检测方法存在遮挡目标检测难度大、误检漏检率高的问题,提出一种改进YOLOv5的安全帽检测方法;首先,使用K-means++聚类算法重新设计匹配安全帽数据集的先验锚框尺寸;其次,使用Swin Transformer作为YOLOv5的骨干... 针对目前施工现场的安全帽检测方法存在遮挡目标检测难度大、误检漏检率高的问题,提出一种改进YOLOv5的安全帽检测方法;首先,使用K-means++聚类算法重新设计匹配安全帽数据集的先验锚框尺寸;其次,使用Swin Transformer作为YOLOv5的骨干网络来提取特征,基于可移位窗口的Multi-head自注意力机制能建模不同空间位置特征之间的依赖关系,有效地捕获全局上下文信息,具有更好的特征提取能力;再次,提出C3-Ghost模块,基于Ghost Bottleneck对YOLOv5的C3模块进行改进,旨在通过低成本的操作生成更多有价值的冗余特征图,有效减少模型参数和计算复杂度;最后,基于双向特征金字塔网络跨尺度特征融合的结构优势提出新型跨尺度特征融合模块,更好地适应不同尺度的目标检测任务;实验结果表明,与原始YOLOv5相比,改进的YOLOv5在安全帽检测任务上的mAP@.5:.95指标提升了2.3%,检测速度达到每秒35.2帧,满足复杂施工场景下安全帽佩戴检测的准确率和实时性要求。 展开更多
关键词 安全帽佩戴检测 YOLOv5 Swin Transformer GHOST 新型跨尺度特征融合 K-means++
下载PDF
基于CELCD和MFVPMCD的智能故障诊断方法研究 被引量:11
8
作者 潘海洋 郑近德 +1 位作者 杨宇 童宝宏 《电子学报》 EI CAS CSCD 北大核心 2017年第3期546-551,共6页
针对旋转机械故障诊断方法中信号处理和模式识别的不足,即端点效应和判别片面性问题,提出一种基于互相关匹配延拓局部特征尺度分解(Cross-correlation matching endpoint Extension Local Characteristic scale Decomposition,CELCD)和... 针对旋转机械故障诊断方法中信号处理和模式识别的不足,即端点效应和判别片面性问题,提出一种基于互相关匹配延拓局部特征尺度分解(Cross-correlation matching endpoint Extension Local Characteristic scale Decomposition,CELCD)和改进多变量预测模型(Variable Predictive Model based Class Discriminate,VPMCD)的智能故障诊断方法,首先探索待分解信号前后端的数据规律,选取匹配波形完成端点延拓,然后利用局部特征尺度分解(Local Characteristic scale Decomposition,LCD)得到各去除端点效应的内禀尺度分量(Intrinsic Scale Component,ISC),最后输入到基于多模型融合的多变量预测模型(Multi-model Fusion-Variable Predictive Model based Class Discriminate,MFVPMCD)分类器中进行概率状态判定.实验分析结果表明,所提方法能有效地对滚动轴承的工作状态进行识别. 展开更多
关键词 互相关匹配延拓 局部特征尺度分解 多模型融合 多变量预测模型 故障诊断
下载PDF
基于改进YOLOv5的火焰烟雾检测 被引量:9
9
作者 宋华伟 屈晓娟 +1 位作者 杨欣 万方杰 《计算机工程》 CAS CSCD 北大核心 2023年第6期250-256,共7页
为更好地实现基于图像的实时火灾预警,结合YOLOv5s提出一种改进的火焰烟雾检测算法。将YOLOv5s颈部原有的路径聚合网络模块替换为双向交叉尺度融合模块,使深层网络可以直接提取浅层特征,增强信息流并提升网络特征融合能力。在YOLOv5s头... 为更好地实现基于图像的实时火灾预警,结合YOLOv5s提出一种改进的火焰烟雾检测算法。将YOLOv5s颈部原有的路径聚合网络模块替换为双向交叉尺度融合模块,使深层网络可以直接提取浅层特征,增强信息流并提升网络特征融合能力。在YOLOv5s头部添加引入协调注意力的推理层,在不过多增加计算量的前提下加强检测头对网络信息的提取和定位能力,并提高检测精度。采用HSV色域增强、随机旋转、Mosaic等多种数据增强技术调整并扩充训练数据,使用k-means聚类算法获取数据集先验锚框,增强检测模型鲁棒性。实验结果表明,与基于YOLOv5s的火焰烟雾检测算法相比,改进算法的平均精度均值提升了3.2个百分点,检测速度达到243帧/s,并且保持了YOLOv5s的轻量化优势,在遮挡、夜晚、小目标等复杂场景下均具有较好的火焰烟雾检测效果。 展开更多
关键词 YOLOv5网络 火焰烟雾检测 双向交叉尺度融合 协调注意力 推理层
下载PDF
基于多模态融合和自适应剪枝Transformer的脑肿瘤图像分割算法 被引量:1
10
作者 姚宗亮 黄荣 +2 位作者 董爱华 韩芳 王青云 《宁夏大学学报(自然科学版)》 CAS 2024年第1期16-24,共9页
脑肿瘤是目前世界上最致命的肿瘤之一,所以脑肿瘤图像的自动分割在临床诊疗中变得日益重要.近年来,基于CNN和Transformer的脑肿瘤分割方法在医学图像分割领域取得了令人欣喜的成就.然而,大多数方法没有充分利用脑肿瘤多模态间的互补性... 脑肿瘤是目前世界上最致命的肿瘤之一,所以脑肿瘤图像的自动分割在临床诊疗中变得日益重要.近年来,基于CNN和Transformer的脑肿瘤分割方法在医学图像分割领域取得了令人欣喜的成就.然而,大多数方法没有充分利用脑肿瘤多模态间的互补性和差异性,并且模型中的Transformer在捕获远程依赖性的同时,忽略了其较大的计算复杂性、冗余依赖性等问题.针对此问题,提出一种基于多模态融合和自适应剪枝Transformer的脑肿瘤图像分割方法(MF-MAPT Swin UNETR),其中多模态融合模块可以充分学习性质相近的模态间信息和不同模态不同尺度的特征变化,为后续分割提供了充分的准备;基于多模态的自适应剪枝Transformer可以降低计算复杂度,对提升性能有一定的帮助,将MF-MAPT Swin UNETR模型在两个公共数据集上进行了实验验证,结果表明,该模型较最先进的方法整体具有突出的分割性能. 展开更多
关键词 脑肿瘤分割 TRANSFORMER 模态交叉连接 多尺度特征融合 token融合 自适应剪枝
下载PDF
基于交叉注意和跨尺度融合的车辆抛投垃圾识别
11
作者 陈云腾 孙振华 +1 位作者 周杰忻 刘志 《浙江工业大学学报》 CAS 北大核心 2024年第6期611-620,共10页
旨在实时交通监控视频中智能识别违反车辆投掷垃圾(TWV)行为。TWV不仅污染环境,而且存在大量潜在危险,尤其是在高速隧道场景中,严重影响行车安全。目前,视频中TWV行为仍主要依靠人工方式检查,既耗时又费力。为此,提出了一种基于深度学... 旨在实时交通监控视频中智能识别违反车辆投掷垃圾(TWV)行为。TWV不仅污染环境,而且存在大量潜在危险,尤其是在高速隧道场景中,严重影响行车安全。目前,视频中TWV行为仍主要依靠人工方式检查,既耗时又费力。为此,提出了一种基于深度学习的车辆抛投垃圾识别模型(VTWIM),结合交叉注意和跨尺度融合模型(CASF)、选择性搜索和非最大化抑制(NMS),实现了基于深度剩余网络的车辆垃圾识别方法(CASF-VTWI)。首先,通过选择性搜索将一个视频帧分割为多个区域,这些区域与标有位置框的可疑对象相匹配;然后,利用CASF进行抛掷垃圾的识别训练;最后,利用NMS移除了冗余位置框,保留了最优的位置框。所提方法较好地解决了车辆垃圾的智能识别问题,对实时交通监控视频进行的实验研究证明了模型和算法的有效性与优越性。 展开更多
关键词 车辆抛投垃圾 交叉注意和跨尺度融合 交通监控视频
下载PDF
基于跨尺度特征融合与注意力机制的遥感船舶检测
12
作者 汤永恒 郭璇 +2 位作者 孙水发 李昌振 张晶 《遥感信息》 CSCD 北大核心 2024年第5期29-37,共9页
针对常规目标检测算法对遥感船舶目标检测精度低且预测框不能将船舶目标紧密封装,为后续匹配计算带来极大误差等问题,提出一种跨尺度特征融合与注意力机制的遥感船舶检测算法。该算法通过HRNetV2_w40骨干网络提取高分辨率图像特征,并采... 针对常规目标检测算法对遥感船舶目标检测精度低且预测框不能将船舶目标紧密封装,为后续匹配计算带来极大误差等问题,提出一种跨尺度特征融合与注意力机制的遥感船舶检测算法。该算法通过HRNetV2_w40骨干网络提取高分辨率图像特征,并采用跨尺度融合特征金字塔模块对backbone提取的多级特征信息进行跨级融合,设计卷积注意力网络模块让网络模型在空间和通道两个维度产生注意力特征图信息以生成更加精细化特征图。同时,全新设计融合旋转角度信息的旋转目标损失函数使算法可有效检测任意方向船舶目标。实验结果表明,该算法能有效检测与识别遥感船舶目标,平均准确率达到74.8%,高于现有其他方法。此外,该算法很容易扩展到其他工业领域旋转目标检测任务中。 展开更多
关键词 深度学习 船舶检测 旋转检测 跨尺度特征融合 卷积注意力
下载PDF
基于RFB和超网络的跨尺度多层次真实失真图像质量评价方法
13
作者 周怀博 贾惠珍 王同罕 《现代电子技术》 北大核心 2024年第9期47-52,共6页
为了能在真实失真图像质量领域实现高效的跨尺度学习,提出一种双分支特征提取方法。首先,利用对比学习方法自监督地提取跨尺度、跨颜色空间的图像内容感知特征;随后,采用基于扩张感受野和超网络的策略,将多层次特征信息与跨尺度信息进... 为了能在真实失真图像质量领域实现高效的跨尺度学习,提出一种双分支特征提取方法。首先,利用对比学习方法自监督地提取跨尺度、跨颜色空间的图像内容感知特征;随后,采用基于扩张感受野和超网络的策略,将多层次特征信息与跨尺度信息进行循环交互融合,以获取更贴近人类感知的图像质量特征。基于公开真实失真数据库的实验结果表明,所提算法在真实失真图像质量评价上取得了优越性能,而且,通过两个尺度的实验结果展示了该算法实现了更高效的跨尺度学习,从而为图像多尺度深度网络的应用提供了较好基础。 展开更多
关键词 图像质量评价 无参考 真实失真 跨尺度学习 多特征融合 双分支特征提取
下载PDF
基于多尺度特征融合的跨视角步态识别
14
作者 邹雪 谭棉 +2 位作者 严晓波 王飞 王林 《电子测量技术》 北大核心 2024年第1期186-192,共7页
在跨视角步态识别中,针对衣着遮挡情况下难以提取具有可辨别性和多样性的步态特征,导致识别准确率下降的问题,提出了一种基于多尺度特征融合网络的跨视角步态识别方法。该方法能够有效利用步态特征间的互补性,获得具有可辨别性和多样性... 在跨视角步态识别中,针对衣着遮挡情况下难以提取具有可辨别性和多样性的步态特征,导致识别准确率下降的问题,提出了一种基于多尺度特征融合网络的跨视角步态识别方法。该方法能够有效利用步态特征间的互补性,获得具有可辨别性和多样性的步态特征,从而解决因衣着遮挡造成可辨别性差以及单一性的问题,进而提升跨视角步态识别的准确性。为验证所提方法的有效性,在公共数据集CASIA-B上进行了验证,实验结果表明所提方法在处理具有遮挡条件下的跨视角步态识别问题的识别性能达到了73.4%,同时在正常和背包两种行走条件下的识别性能分别达到了95.5%和88.0%。此外,我们的方法在处理遮挡条件下的识别性能优于同类典型的步态识别方法。 展开更多
关键词 跨视角步态识别 多尺度特征融合 步态特征 可辨别性
下载PDF
低高频多尺度融合的跨模态行人重识别研究
15
作者 朱沛伍 高树辉 《重庆邮电大学学报(自然科学版)》 CSCD 北大核心 2024年第6期1183-1193,共11页
跨模态行人重识别技术在公共安全、灾难响应、犯罪现场勘查等方面有广阔的应用前景。为了高效利用不同模态之间多样化信息,探索有效的行人重识别方法,提出一种结合低高频信息的多尺度融合(multiple frequence multi-scale embedding,MF... 跨模态行人重识别技术在公共安全、灾难响应、犯罪现场勘查等方面有广阔的应用前景。为了高效利用不同模态之间多样化信息,探索有效的行人重识别方法,提出一种结合低高频信息的多尺度融合(multiple frequence multi-scale embedding,MFME)模型。通过多尺度信息融合(multi-scale information fusion,MIF)模块从多个尺度捕获行人特征,分别获得图像的全局结构和局部细节特征;通过低高频特征聚合(multi frequency feature embedding,MFFE)模块聚合行人的多频信息,确保模型在面对环境变化和不同光照条件下依然能保持高准确度以适应模态变化。实验结果表明,提出的模型在公开数据集SYSU-MM01上Rank-1和mAP识别率分别达到75.79%和72.02%。该模型有效挖掘和利用了跨模态间的多样化信息,提高了行人的重识别率,能更好地适应多变的实际应用环境。 展开更多
关键词 跨模态 行人重识别 深度学习 多尺度信息融合 低高频特征聚合
下载PDF
基于LOD-RSINet的轻量化遥感图像目标检测
16
作者 李琛 丁胜 付佳俊 《计算机技术与发展》 2024年第12期165-171,共7页
为了满足遥感图像目标检测任务中轻量化和快速推理的需求,提出了一种基于改进YOLOv8s的轻量化遥感图像目标检测算法(A Lightweight Object Detection Network for Remote Sensing Images, LOD-RSINet)。首先,提出基于SENetv2机制构建的C... 为了满足遥感图像目标检测任务中轻量化和快速推理的需求,提出了一种基于改进YOLOv8s的轻量化遥感图像目标检测算法(A Lightweight Object Detection Network for Remote Sensing Images, LOD-RSINet)。首先,提出基于SENetv2机制构建的C2SE(C2f-SENetv2)模块,在略微增加模型参数量的同时让网络更有效地学习到输入数据的不同特征,提升特征表达的精细度和全局信息的整合能力;其次,设计一种轻量级跨尺度特征融合模块CCFM,以增强模型对于尺度变化的适应性和对小目标的检测能力,在不影响模型检测精度的情况下降低了参数量并提高了检测速度;最后,引入了一种Shape IoU损失函数,通过关注边界框本身的形状和尺度来计算损失,从而使边界框回归更加准确。实验证明,改进后的算法在DIOR数据集上的检测精度mAP50和mAP50-95分别达到了0.867和0.668,参数量GFLOPs降低了5.61百分点,检测速度FPS提高了5.94百分点,性能表现优于其他对比方法,能够在轻量化的同时提高模型的目标检测能力。 展开更多
关键词 YOLOv8 轻量化 遥感图像目标检测 跨尺度特征融合 损失函数
下载PDF
基于改进Deformable DETR的无人机视频流车辆目标检测算法
17
作者 江志鹏 王自全 +4 位作者 张永生 于英 程彬彬 赵龙海 张梦唯 《计算机工程与科学》 CSCD 北大核心 2024年第1期91-101,共11页
针对无人机视频流检测中小目标数量多、因图像传输质量较低而导致的上下文语义信息不充分、传统算法融合特征推理速度慢、数据集类别样本不均衡导致的训练效果差等问题,提出一种基于改进Deformable DETR的无人机视频流车辆目标检测算法... 针对无人机视频流检测中小目标数量多、因图像传输质量较低而导致的上下文语义信息不充分、传统算法融合特征推理速度慢、数据集类别样本不均衡导致的训练效果差等问题,提出一种基于改进Deformable DETR的无人机视频流车辆目标检测算法。在模型结构方面,该算法设计了跨尺度特征融合模块以增大感受野,提升小目标检测能力,并采用针对object_query的挤压-激励模块提升关键目标的响应值,减少重要目标的漏检与错检率;在数据处理方面,使用了在线困难样本挖掘技术,改善数据集中类别样本分布不均的问题。在UAVDT数据集上进行了实验,实验结果表明,改进后的算法相较于基线算法在平均检测精度上提升了1.5%,在小目标检测精度上提升了0.8%,并在保持参数量较少增长的情况下,维持了原有的检测速度。 展开更多
关键词 Deformable DETR 目标检测 跨尺度特征融合模块 object query挤压-激励 在线难样本挖掘
下载PDF
结合跨尺度特征融合与瓶颈注意力模块的轻量型红外小目标检测网络 被引量:4
18
作者 林再平 李博扬 +6 位作者 李淼 王龙光 吴天昊 罗伊杭 肖超 李若敬 安玮 《红外与毫米波学报》 SCIE EI CAS CSCD 北大核心 2022年第6期1102-1112,共11页
提出一种结合跨尺度特征融合与瓶颈注意力模块的轻量型单帧红外小目标检测网络。该网络在不引入额外神经元的前提下,直接在编码层和解码层之间进行高频多尺度特征交互,从而维持小目标在网络深层的响应幅值,实现小目标浅层空间结构特征... 提出一种结合跨尺度特征融合与瓶颈注意力模块的轻量型单帧红外小目标检测网络。该网络在不引入额外神经元的前提下,直接在编码层和解码层之间进行高频多尺度特征交互,从而维持小目标在网络深层的响应幅值,实现小目标浅层空间结构特征与深层高级语义特征之间的交互融合。同时,该网络在编码器瓶颈处级联轻量型混合注意力模块,进一步增强目标特征在网络深层的响应幅值。实验结果表明,该网络能有效抑制复杂背景杂波,并以较低参数量实现红外小目标检测。 展开更多
关键词 红外小目标检测 轻量型算法 跨尺度融合 瓶颈注意力模块
下载PDF
安宫牛黄丸抗心力衰竭作用的跨尺度多向药理学研究 被引量:3
19
作者 史雪敬 金强 +5 位作者 赵誉 许麦成 张寒 盛洪达 王毅 赵筱萍 《中国中药杂志》 CAS CSCD 北大核心 2022年第7期1888-1896,共9页
安宫牛黄丸具有清热解毒、豁痰开窍的功效,临床常用于治疗热入心包所致的高热惊厥等疾病,但其对心力衰竭的治疗作用尚未得到关注。该研究采用超高效液相色谱-串联飞行时间质谱(UPLC-Q-TOF-MS)联用技术,辨析安宫牛黄丸调控的差异代谢物,... 安宫牛黄丸具有清热解毒、豁痰开窍的功效,临床常用于治疗热入心包所致的高热惊厥等疾病,但其对心力衰竭的治疗作用尚未得到关注。该研究采用超高效液相色谱-串联飞行时间质谱(UPLC-Q-TOF-MS)联用技术,辨析安宫牛黄丸调控的差异代谢物,结合药效学数据与代谢网络的融合分析,研究安宫牛黄丸抗心力衰竭的潜在作用机制。建立异丙肾上腺素诱导的小鼠心力衰竭模型,给予安宫牛黄丸灌胃1周,然后进行超声心动图检测评价药效,收集血清样本进行代谢组学分析。通过偏最小二乘判别分析(PLS-DA)筛选出安宫牛黄丸抗心力衰竭的8个显著性差异代谢物,后导入MetaboAnalyst数据库进行相关代谢通路分析;对安宫牛黄丸主要化合物的潜在靶点进行筛选,并富集关键代谢通路;将安宫牛黄丸给药后部分代谢物相对含量回调指数与整体药效数据进行跨尺度融合分析,进一步进行“化合物-反应-酶-基因”网络分析。综合分析,推测安宫牛黄丸抗心力衰竭作用可能主要与花生四烯酸、氨基酸、甘油磷脂及亚油酸代谢相关。该文所建立的跨尺度多向药理作用的辨析方法,为运用现代科学技术解读安宫牛黄丸抗心力衰竭作用的科学内涵提供了新途径。 展开更多
关键词 安宫牛黄丸 心力衰竭 多向药理学 差异代谢物 通路分析 跨尺度融合分析
原文传递
基于跨尺度特征融合自注意力的图像描述方法 被引量:2
20
作者 王鸣展 冀俊忠 +1 位作者 贾奥哲 张晓丹 《计算机科学》 CSCD 北大核心 2022年第10期191-197,共7页
近年来,基于自注意力机制的编码器-解码器框架已经成为主流的图像描述模型。然而,编码器中的自注意力只建模低尺度特征的视觉关系,忽略了高尺度视觉特征中的一些有效信息,从而影响了生成描述的质量。针对该问题,文中提出了一种基于跨尺... 近年来,基于自注意力机制的编码器-解码器框架已经成为主流的图像描述模型。然而,编码器中的自注意力只建模低尺度特征的视觉关系,忽略了高尺度视觉特征中的一些有效信息,从而影响了生成描述的质量。针对该问题,文中提出了一种基于跨尺度特征融合自注意力的图像描述方法。该方法在进行自注意力运算时,将低尺度和高尺度的视觉特征进行跨尺度融合,从视觉角度上提高自注意力关注的范围,增加有效视觉信息,减少噪声,从而学习到更准确的视觉语义关系。在MS COCO数据集上的实验结果表明,所提方法能够更精确地捕获跨尺度视觉特征间的关系,生成更准确的描述。特别地,该方法是一种通用的方法,通过与其他基于自注意力的图像描述方法相结合,能进一步提高模型性能。 展开更多
关键词 图像描述 自注意力 跨尺度特征融合
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部