To get the sustainable society, the hydropower with not only the large but also the small/mini/micro capacities has been paid attention to in the power generation. The cross flow turbine can work effectively at the co...To get the sustainable society, the hydropower with not only the large but also the small/mini/micro capacities has been paid attention to in the power generation. The cross flow turbine can work effectively at the comparatively low head and/or low discharge, then the runner and the turbine profile has been optimizing. In this paper, the model turbine was prepared in accordance with the traditional design, and the performance and the flow condition were investigated experimentally at the various operating conditions. The hydraulic efficiency is doubtlessly maximal while the guide vane is at the normal/design position, and deteriorates in the lower discharges adjusted by the guide vane. Such deteriorations are brought from the unacceptable flow conditions in the inlet nozzle. To improve the efficiency dramatically in the lower discharge, the guide vane installed in the inlet nozzle was equipped with the current plate, and the fruitful effects of the plate on the efficiency were confirmed experimentally.展开更多
This study aims to develop a water turbine suitable for ultra-low heads in open channels, with the end goal being the effective utilization of unutilized hydroelectric energy in agricultural water channels. We perform...This study aims to develop a water turbine suitable for ultra-low heads in open channels, with the end goal being the effective utilization of unutilized hydroelectric energy in agricultural water channels. We performed tests by applying a cross-flow runner to an open channel as an undershot water turbine while attempting to simplify the structure and eliminate the casing. We experimentally investigated the flow fields and performance of water tur- bines in states where the flow rate was constant for the undershot cross-flow water turbine mentioned above. In addition, we compared existing undershot water turbines with our undershot cross-flow water turbine after at- taching a bottom plate to the runner. From the results, we were able to clarify the following. Although the effec- tive head for cross-flow runners with no bottom plate was lower than those found in existing runners equipped with a bottom plate, the power output is greater in the high rotational speed range because of the high turbine ef- ficiency. Also, the runner with no bottom plate differed from rtmners that had a bottom plate in that no water was being wound up by the blades or retained between the blades, and the former received twice the flow due to the flow-through effect. As a result, the turbine efficiency was greater for runners with no bottom plate in the full ro- tational speed range compared with that found in runners that had a bottom plate.展开更多
Recently, small hydroelectric generators have gained attention as a further development in water turbine technology for ultra low head drops in open channels. The authors have evaluated the application of cross-flow w...Recently, small hydroelectric generators have gained attention as a further development in water turbine technology for ultra low head drops in open channels. The authors have evaluated the application of cross-flow water turbines in open channels as an undershot type after removing the casings and guide vanes to substantially simplify these water turbines. However, because undershot cross-flow water turbines are designed on the basis of cross-flow water turbine runners used in typical pipelines, it remains unclear whether the number of blades has an effect on the performance or flow fields. Thus, in this research, experiments and numerical analyses are employed to study the performance and flow fields of undershot cross-flow water turbines with varying number of blades. The findings show that the turbine output and torque are lower, the fluctuation is significantly higher, and the turbine efficiency is higher for runners with 8 blades as opposed to those with 24 blades.展开更多
A study on the flow characteristics in the cross-flow turbine model T15 300 has been conducted. The study was designed to examine the fluid flow trajectory in the turbine and identify areas for further improvement. Co...A study on the flow characteristics in the cross-flow turbine model T15 300 has been conducted. The study was designed to examine the fluid flow trajectory in the turbine and identify areas for further improvement. Computational fluid dynamics (CFD) approach was employed and the results were compared with experimental data. The simulation study was conducted at guide vane angle of 20<sup>o</sup>, 30<sup>o</sup>, 35<sup>o</sup> and 41<sup>o</sup>. The shaft diameter was set at 30 mm, 45 mm, 60 mm, and 75 mm for each head while the head was maintained at 50 m. The flow characteristics were determined using particles trajectory. The research findings showed that the optimal vane angle and shaft diameter for cross-flow turbine were 41<sup>o</sup> and 45 mm respectively. These results are in good agreement with experimental data from previous studies.展开更多
This study investigated the flow characteristics around a cross-flow wind turbine. A wind tunnel experiment (WTE) was performed to measure the flow characteristics past the wind turbine when operating at the optimal t...This study investigated the flow characteristics around a cross-flow wind turbine. A wind tunnel experiment (WTE) was performed to measure the flow characteristics past the wind turbine when operating at the optimal tip-speed ratio of λ = 0.4. In addition, computational fluid dynamics (CFD) simulations were performed for the flow field around the wind turbine that was operating at tip-speed ratios of λ = 0.1, 0.4, and 0.7. The CFD approach was validated against the WTE measurements. CFD results confirmed that with an increase in λ, the velocity deficit was generally increased in the leeward of the return side of the wind turbine, while it was generally decreased in the leeward of the drive side of the wind turbine. It was also confirmed that with an increase in λ, the turbulence kinetic energy was generally increased in the leeward of the return side of the wind turbine, while it generally decreased in the leeward of the drive side of the wind turbine.展开更多
文摘To get the sustainable society, the hydropower with not only the large but also the small/mini/micro capacities has been paid attention to in the power generation. The cross flow turbine can work effectively at the comparatively low head and/or low discharge, then the runner and the turbine profile has been optimizing. In this paper, the model turbine was prepared in accordance with the traditional design, and the performance and the flow condition were investigated experimentally at the various operating conditions. The hydraulic efficiency is doubtlessly maximal while the guide vane is at the normal/design position, and deteriorates in the lower discharges adjusted by the guide vane. Such deteriorations are brought from the unacceptable flow conditions in the inlet nozzle. To improve the efficiency dramatically in the lower discharge, the guide vane installed in the inlet nozzle was equipped with the current plate, and the fruitful effects of the plate on the efficiency were confirmed experimentally.
文摘This study aims to develop a water turbine suitable for ultra-low heads in open channels, with the end goal being the effective utilization of unutilized hydroelectric energy in agricultural water channels. We performed tests by applying a cross-flow runner to an open channel as an undershot water turbine while attempting to simplify the structure and eliminate the casing. We experimentally investigated the flow fields and performance of water tur- bines in states where the flow rate was constant for the undershot cross-flow water turbine mentioned above. In addition, we compared existing undershot water turbines with our undershot cross-flow water turbine after at- taching a bottom plate to the runner. From the results, we were able to clarify the following. Although the effec- tive head for cross-flow runners with no bottom plate was lower than those found in existing runners equipped with a bottom plate, the power output is greater in the high rotational speed range because of the high turbine ef- ficiency. Also, the runner with no bottom plate differed from rtmners that had a bottom plate in that no water was being wound up by the blades or retained between the blades, and the former received twice the flow due to the flow-through effect. As a result, the turbine efficiency was greater for runners with no bottom plate in the full ro- tational speed range compared with that found in runners that had a bottom plate.
文摘Recently, small hydroelectric generators have gained attention as a further development in water turbine technology for ultra low head drops in open channels. The authors have evaluated the application of cross-flow water turbines in open channels as an undershot type after removing the casings and guide vanes to substantially simplify these water turbines. However, because undershot cross-flow water turbines are designed on the basis of cross-flow water turbine runners used in typical pipelines, it remains unclear whether the number of blades has an effect on the performance or flow fields. Thus, in this research, experiments and numerical analyses are employed to study the performance and flow fields of undershot cross-flow water turbines with varying number of blades. The findings show that the turbine output and torque are lower, the fluctuation is significantly higher, and the turbine efficiency is higher for runners with 8 blades as opposed to those with 24 blades.
文摘A study on the flow characteristics in the cross-flow turbine model T15 300 has been conducted. The study was designed to examine the fluid flow trajectory in the turbine and identify areas for further improvement. Computational fluid dynamics (CFD) approach was employed and the results were compared with experimental data. The simulation study was conducted at guide vane angle of 20<sup>o</sup>, 30<sup>o</sup>, 35<sup>o</sup> and 41<sup>o</sup>. The shaft diameter was set at 30 mm, 45 mm, 60 mm, and 75 mm for each head while the head was maintained at 50 m. The flow characteristics were determined using particles trajectory. The research findings showed that the optimal vane angle and shaft diameter for cross-flow turbine were 41<sup>o</sup> and 45 mm respectively. These results are in good agreement with experimental data from previous studies.
文摘This study investigated the flow characteristics around a cross-flow wind turbine. A wind tunnel experiment (WTE) was performed to measure the flow characteristics past the wind turbine when operating at the optimal tip-speed ratio of λ = 0.4. In addition, computational fluid dynamics (CFD) simulations were performed for the flow field around the wind turbine that was operating at tip-speed ratios of λ = 0.1, 0.4, and 0.7. The CFD approach was validated against the WTE measurements. CFD results confirmed that with an increase in λ, the velocity deficit was generally increased in the leeward of the return side of the wind turbine, while it was generally decreased in the leeward of the drive side of the wind turbine. It was also confirmed that with an increase in λ, the turbulence kinetic energy was generally increased in the leeward of the return side of the wind turbine, while it generally decreased in the leeward of the drive side of the wind turbine.