Little is known about how chronic inflammation contributes to the progression of hepatoceUular carcinoma (HCC), especially the initiation of cancer. To uncover the critical transition from chronic inflammation to HC...Little is known about how chronic inflammation contributes to the progression of hepatoceUular carcinoma (HCC), especially the initiation of cancer. To uncover the critical transition from chronic inflammation to HCC and the molecular mechanisms at a network level, we analyzed the time-series proteomic data of woodchuck hepatitis virus/c.myc mice and age-matched wt-C57BL/6 mice using our dynamical network biomarker (DNB) model. DNB analysis indicated that the 5th month after birth of transgenic mice was the critical period of cancer initiation, just before the critical transition, which is consistent with clinical symptoms. Meanwhile, the DNB-associated network showed a drastic inversion of protein expression and coexpression levels before and after the critical transition. Two members of DNB, PLA2G6 and CYP2C44, along with their associated differentially expressed proteins, were found to induce dysfunction of arachidonic acid metabolism, further activate inflammatory responses through inflammatory mediator regulation of transient receptor potential channels, and finally lead to impairments of liver detoxification and malignant transition to cancer. As a c-Myc target, PLA2G6 positively correlated with c-Myc in expression, showing a trend from decreasing to increasing during carcinogenesis, with the minimal point at the critical transition or tipping point. Such trend of homologous PLA2G6 and c-Myc was also observed during human hepatocarcinogenesis, with the minimal point at high-grade dysplastic nodules (a stage just before the carcinogenesis). Our study implies that PLA2G6 might function as an oncogene like famous c-Myc during hepatocar- cinogenesis, while downregulation of PLA2G6 and c-Myc could be a warning signal indicating imminent carcinogenesis.展开更多
Stochastic perturbations and periodic excitations are generally regarded as sources to induce critical transitions in complex systems. However, we find that they are also able to slow down an imminent critical transit...Stochastic perturbations and periodic excitations are generally regarded as sources to induce critical transitions in complex systems. However, we find that they are also able to slow down an imminent critical transition. To illustrate this phenomenon, a periodically driven bistable eutrophication model with Gaussian white noise is introduced as a prototype class of real systems.The residence probability(RP) is presented to measure the possibility that the given system stays in the oligotrophic state versus Gaussian white noise and periodic force. Variations in the mean first passage time(MFPT) and the mean velocity(MV) of the first right-crossing process are also calculated respectively. We show that the frequency of the periodic force can increase the MFPT while reduce the MV under different control parameters. Nevertheless, the noise intensity or the amplitude may result in an increase of the RP only in the case of control parameters approaching the critical values. Furthermore, for an impending critical transition, an increase of the RP appears with the interaction between the amplitude and noise intensity or the combination of the noise intensity and frequency, while the interaction of the frequency and amplitude leads to an extension of the MFPT or a decrease of the MV. As a result, an increase of the RP and MFPT, and a decrease of the MVobtained from our results claim that it is possible to slow down an imminent critical transition via Gaussian white noise and periodic force.展开更多
Amorphous systems undergo the jamming transition when the density increases, temperature drops, or external shear stress decreases, as described by the jamming phase diagram which was proposed to unify different proce...Amorphous systems undergo the jamming transition when the density increases, temperature drops, or external shear stress decreases, as described by the jamming phase diagram which was proposed to unify different processes such as the glass transition, random close packing, and yielding under shear stress. At zero temperature and shear stress, the jamming transition occurs at a critical density at Point J. In this paper, we review recent studies of the material properties of marginally jammed solids and the glassy dynamics in the vicinity of Point J. As the only singular point in the jamming phase diagram, Point J exhibits special criticality in both mechanical and vibrational quantities. Dynamics approaching the glass transition in the vicinity of Point J show critical scalings, suggesting that the molecular glass transition and the colloidal glass transition are equivalent in the hard sphere limit. All these studies shed light on the long-standing puzzles of the glass transition arid unusual properties of amorphous solids.展开更多
Mottness is at the heart of the essential physics in a strongly correlated system as many novel quantum phenomena occur in the metallic phase near the Mott metal–insulator transition. We investigate the Mott transiti...Mottness is at the heart of the essential physics in a strongly correlated system as many novel quantum phenomena occur in the metallic phase near the Mott metal–insulator transition. We investigate the Mott transition in a Hubbard model by using the dynamical mean-field theory and introduce the local quantum state fidelity to depict the Mott metal–insulator transition. The local quantum state fidelity provides a convenient approach to determining the critical point of the Mott transition. Additionally, it presents a consistent description of the two distinct forms of the Mott transition points.展开更多
Magnetic materials with noncollinear spin configurations have engendered significant interest in condensed matter physics due to their intriguing physical properties.We direct our attention towards the magnetic proper...Magnetic materials with noncollinear spin configurations have engendered significant interest in condensed matter physics due to their intriguing physical properties.We direct our attention towards the magnetic properties and critical behavior of single-crystal SmMn_(2)Ge_(2),an itinerant magnet with numerous temperature-dependent magnetic phase transitions.Notably,SmMn_(2)Ge_(2)displays significant magnetic anisotropy with easy magnetization direction switching from the c axis to the ab plane as temperature decreases.The critical behavior of the ferromagnetic transition occurring above room temperature is thoroughly examined.Reliable and self-consistent critical exponents,includingβ=0.292(2),γ=0.924(8),andδ=4.164(6),along with the Curie temperature T_c=347 K,are extracted through various methods,which provide evidence for the coexistence of multiple magnetic interactions in SmMn_(2)Ge_(2).Further analysis reveals that the magnetic interaction of SmMn_(2)Ge_(2)is a long-range type with the interaction distance decaying as J(r)~r^(-4.35).展开更多
The critical transition Reynolds number is the lowest value at which the turbulent flow can hold in real flows.The determination of the critical transition Reynolds number not only is a scientific problem,but also is ...The critical transition Reynolds number is the lowest value at which the turbulent flow can hold in real flows.The determination of the critical transition Reynolds number not only is a scientific problem,but also is important for some engineering problems.However,there is no available theoretical method to search the critical value.For the hypersonic boundary layer with significant importance for engineering problems,there is no available experimental method to search the critical value so far.Consequently,it is imperative to take numerical method to search it.In this paper,direct numerical simulations(DNS)method is employed to determine the critical transition Reynolds number for the incompressible flat-plate boundary layer.Firstly,under the assumption of parallel flow,the temporal mode DNS is performed to determine the critical value as Re_(xpcr)=43767,which is quite close to the numerical results of other people.Secondly,under the condition of nonparallel flow,the spatial mode DNS is performed to determine the critical transition Reynolds number as Re_(xcr)=3×10^(5),which is well consistent with the experimental results.In principle,the proposed method in this paper can be extended to the supersonic/hypersonic boundary layer,and that problem will be discussed in the subsequent papers.展开更多
文摘Little is known about how chronic inflammation contributes to the progression of hepatoceUular carcinoma (HCC), especially the initiation of cancer. To uncover the critical transition from chronic inflammation to HCC and the molecular mechanisms at a network level, we analyzed the time-series proteomic data of woodchuck hepatitis virus/c.myc mice and age-matched wt-C57BL/6 mice using our dynamical network biomarker (DNB) model. DNB analysis indicated that the 5th month after birth of transgenic mice was the critical period of cancer initiation, just before the critical transition, which is consistent with clinical symptoms. Meanwhile, the DNB-associated network showed a drastic inversion of protein expression and coexpression levels before and after the critical transition. Two members of DNB, PLA2G6 and CYP2C44, along with their associated differentially expressed proteins, were found to induce dysfunction of arachidonic acid metabolism, further activate inflammatory responses through inflammatory mediator regulation of transient receptor potential channels, and finally lead to impairments of liver detoxification and malignant transition to cancer. As a c-Myc target, PLA2G6 positively correlated with c-Myc in expression, showing a trend from decreasing to increasing during carcinogenesis, with the minimal point at the critical transition or tipping point. Such trend of homologous PLA2G6 and c-Myc was also observed during human hepatocarcinogenesis, with the minimal point at high-grade dysplastic nodules (a stage just before the carcinogenesis). Our study implies that PLA2G6 might function as an oncogene like famous c-Myc during hepatocar- cinogenesis, while downregulation of PLA2G6 and c-Myc could be a warning signal indicating imminent carcinogenesis.
基金supported by the National Natural Science Foundation of China(Grant Nos.11772255&11872305)the Fundamental Research Funds for the Central Universities+2 种基金Shaanxi Province Project for Distinguished Young ScholarsInnovation Foundation for Doctor Dissertation of Northwestern Polytechnical Universitythe China Postdoctoral Science Foundation
文摘Stochastic perturbations and periodic excitations are generally regarded as sources to induce critical transitions in complex systems. However, we find that they are also able to slow down an imminent critical transition. To illustrate this phenomenon, a periodically driven bistable eutrophication model with Gaussian white noise is introduced as a prototype class of real systems.The residence probability(RP) is presented to measure the possibility that the given system stays in the oligotrophic state versus Gaussian white noise and periodic force. Variations in the mean first passage time(MFPT) and the mean velocity(MV) of the first right-crossing process are also calculated respectively. We show that the frequency of the periodic force can increase the MFPT while reduce the MV under different control parameters. Nevertheless, the noise intensity or the amplitude may result in an increase of the RP only in the case of control parameters approaching the critical values. Furthermore, for an impending critical transition, an increase of the RP appears with the interaction between the amplitude and noise intensity or the combination of the noise intensity and frequency, while the interaction of the frequency and amplitude leads to an extension of the MFPT or a decrease of the MV. As a result, an increase of the RP and MFPT, and a decrease of the MVobtained from our results claim that it is possible to slow down an imminent critical transition via Gaussian white noise and periodic force.
文摘Amorphous systems undergo the jamming transition when the density increases, temperature drops, or external shear stress decreases, as described by the jamming phase diagram which was proposed to unify different processes such as the glass transition, random close packing, and yielding under shear stress. At zero temperature and shear stress, the jamming transition occurs at a critical density at Point J. In this paper, we review recent studies of the material properties of marginally jammed solids and the glassy dynamics in the vicinity of Point J. As the only singular point in the jamming phase diagram, Point J exhibits special criticality in both mechanical and vibrational quantities. Dynamics approaching the glass transition in the vicinity of Point J show critical scalings, suggesting that the molecular glass transition and the colloidal glass transition are equivalent in the hard sphere limit. All these studies shed light on the long-standing puzzles of the glass transition arid unusual properties of amorphous solids.
基金Project supported by the Scientific Research Foundation for Youth Academic Talent of Inner Mongolia University (Grant No.1000023112101/010)the Fundamental Research Funds for the Central Universities of China (Grant No.JN200208)+2 种基金supported by the National Natural Science Foundation of China (Grant No.11474023)supported by the National Key Research and Development Program of China (Grant No.2021YFA1401803)the National Natural Science Foundation of China (Grant Nos.11974051 and 11734002)。
文摘Mottness is at the heart of the essential physics in a strongly correlated system as many novel quantum phenomena occur in the metallic phase near the Mott metal–insulator transition. We investigate the Mott transition in a Hubbard model by using the dynamical mean-field theory and introduce the local quantum state fidelity to depict the Mott metal–insulator transition. The local quantum state fidelity provides a convenient approach to determining the critical point of the Mott transition. Additionally, it presents a consistent description of the two distinct forms of the Mott transition points.
基金the National Natural Science Foundation of China(Grant Nos.12074425 and 11874422)the National Key R&D Program of China(Grant No.2019YFA0308602)。
文摘Magnetic materials with noncollinear spin configurations have engendered significant interest in condensed matter physics due to their intriguing physical properties.We direct our attention towards the magnetic properties and critical behavior of single-crystal SmMn_(2)Ge_(2),an itinerant magnet with numerous temperature-dependent magnetic phase transitions.Notably,SmMn_(2)Ge_(2)displays significant magnetic anisotropy with easy magnetization direction switching from the c axis to the ab plane as temperature decreases.The critical behavior of the ferromagnetic transition occurring above room temperature is thoroughly examined.Reliable and self-consistent critical exponents,includingβ=0.292(2),γ=0.924(8),andδ=4.164(6),along with the Curie temperature T_c=347 K,are extracted through various methods,which provide evidence for the coexistence of multiple magnetic interactions in SmMn_(2)Ge_(2).Further analysis reveals that the magnetic interaction of SmMn_(2)Ge_(2)is a long-range type with the interaction distance decaying as J(r)~r^(-4.35).
基金supported by grants from the National Key Research and Development Program of China(Grant No.2016YFA0401200)the National Natural Science Foundation of China(Grant Nos.12072230,11672204,91952301,and 11732011).
文摘The critical transition Reynolds number is the lowest value at which the turbulent flow can hold in real flows.The determination of the critical transition Reynolds number not only is a scientific problem,but also is important for some engineering problems.However,there is no available theoretical method to search the critical value.For the hypersonic boundary layer with significant importance for engineering problems,there is no available experimental method to search the critical value so far.Consequently,it is imperative to take numerical method to search it.In this paper,direct numerical simulations(DNS)method is employed to determine the critical transition Reynolds number for the incompressible flat-plate boundary layer.Firstly,under the assumption of parallel flow,the temporal mode DNS is performed to determine the critical value as Re_(xpcr)=43767,which is quite close to the numerical results of other people.Secondly,under the condition of nonparallel flow,the spatial mode DNS is performed to determine the critical transition Reynolds number as Re_(xcr)=3×10^(5),which is well consistent with the experimental results.In principle,the proposed method in this paper can be extended to the supersonic/hypersonic boundary layer,and that problem will be discussed in the subsequent papers.