期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Description and Assessment of a Small Renewable Energy Community in the Island of Crete, Greece 被引量:1
1
作者 John Vourdoubas 《Open Journal of Energy Efficiency》 2017年第3期97-111,共15页
A description and assessment of a small renewable energy community located in Crete, Greece is presented. The community included private residential and agricultural activities without any involvement of the public se... A description and assessment of a small renewable energy community located in Crete, Greece is presented. The community included private residential and agricultural activities without any involvement of the public sector. Small-scale decentralized energy systems were used. Solar energy and solid biomass which are locally available covered most of the heat and electricity requirements in the community. Renewable energy technologies used include solar thermal energy, solar-PV and solid biomass burning utilizing olive tree wood and olive kernel wood. These technologies are mature, reliable, well proven in Crete and cost-effective. Existing energy systems were generating 857,877 kWh per year covering 94.46% of the current energy requirements in the community, significantly reducing its emissions at 278,494 kg CO2 per year. The addition of a new solar-PV system with nominal power of 33.6 kWp could cover all the remaining electricity needs in the community, transforming it to a zero-CO2 emission community due to energy use. The total installation cost of the existing renewable energy systems in the community was estimated at 0.16€ per total kWh of thermal and electric energy generated annually and at 0.50€ per ton of CO2 emissions saved annually. Results indicated that the creation of the above-mentioned small local energy community is economically viable, environmental friendly and socially accepted. Therefore it could be replicated in other territories with similar availability of renewable energies, increasing their energy autonomy and sustainability. 展开更多
关键词 CO2 Emissions crete-greece RENEWABLE ENERGY Solar ENERGY Sustainable ENERGY COMMUNITIES
下载PDF
Possibilities of Creating Zero CO2 Emissions Olive Pomace Plants Due to Energy Use in Crete, Greece
2
作者 John Vourdoubas 《Open Journal of Energy Efficiency》 2016年第3期78-87,共10页
Olive pomace plants process olive paste, a waste product of olive mills which produces crude olive kernel oil and olive kernel wood. Olive kernel wood has very good burning characteristics, high heat content, low cost... Olive pomace plants process olive paste, a waste product of olive mills which produces crude olive kernel oil and olive kernel wood. Olive kernel wood has very good burning characteristics, high heat content, low cost and it is used as a renewable solid fuel replacing liquid fuel and heating oil. Part of the produced olive kernel wood is consumed inside the factory for heat generation and the rest is sold to heat consumers. It has been estimated that a typical olive pomace plant located in Crete, Greece consumes 42.86% of the produced olive kernel wood for its own heat generation, while the remaining 57.14% is sold to various heat consumers. 99.1% of the energy used in these plants is consumed for heating and the rest, 0.9%, for lighting and the operation of various electric devices. Olive pomace plants utilize a renewable solid fuel, which is carbon neutral, for the production of thermal energy. Therefore their CO<sub>2</sub> emissions regarding energy utilization are due to electricity use. Installation of solar-PV panels in the plant could generate annually all the electricity needed for its operation. The current legal framework in Greece through net-metering allows the offsetting of grid electricity consumed in factories with PV electricity. The required capital cost of a solar-PV system installed in a typical olive pomace plant located in Crete, Greece in order to offset the grid electricity consumed annually has been estimated at 185,832€, the payback period of 5.33 years and the net present value at 555,671€. Since the plant could utilize only solid biomass for heat generation and could offset the grid electricity consumption with solar electricity, its total CO<sub>2</sub> emissions due to energy use would be zero contributing positively to climate stabilization. 展开更多
关键词 Solid Biomass CO2 Emissions Savings crete-greece Olive Pomace Plant Photovoltaics
下载PDF
Possibilities of Creating Net Zero Carbon Emissions Prisons in the Island of Crete, Greece
3
作者 John Vourdoubas 《Open Journal of Energy Efficiency》 2020年第2期81-93,共13页
An increase in energy efficiency and a reduction of carbon emissions in buildings are prerequisites for mitigating climate change. Public buildings should be energy-refurbished for minimizing their energy use, complyi... An increase in energy efficiency and a reduction of carbon emissions in buildings are prerequisites for mitigating climate change. Public buildings should be energy-refurbished for minimizing their energy use, complying with EU legislation and directives. The creation of net zero carbon emissions prisons in Crete, Greece with reference to the agricultural prison of Agia has been examined. The prison’s capacity is 178 offenders and the annual energy consumption has been estimated at 4000 KWh/prisoner. The use of a solar thermal system for hot water production and a solar-PV system for electricity generation has been proposed for generating the energy required in the prison. Two scenarios have been examined. In the first, the two solar energy systems would generate all the required energy in the prison, while in the second, the two solar energy systems would generate 50% of the annual required energy in the prison, and the rest would be produced by fossil fuels. A tree plantation, either with olive trees or with Eucalyptus trees, would be created for offsetting the carbon emissions due to fossil fuels used in the prison. The surface of the flat plate solar collectors in the solar thermal system has been estimated at 113.9 M<sup>2</sup> to 227.8 M<sup>2</sup> while its cost is at 34,170€ to 68,340€. The nominal power of the solar-PV system has been estimated at 151.9 KW<sub>p</sub> to 303.8 KW<sub>p</sub> while its cost is at 182,280€ to 364,560€. The area of the tree plantation sequestrating 50% of the current CO<sub>2</sub> emissions due to fossil fuels use in the prison has been estimated at 14.74 ha for olive trees and at 5.9 ha for Eucalyptus trees. The results indicated that the energy refurbishment in Agia’s agricultural prison in Crete, Greece, in order to zero its annual net carbon emissions, is feasible. 展开更多
关键词 Carbon Emissions crete-greece Prisons Renewable Energies Tree Plantations
下载PDF
希腊克里特MW6.0地震后的应力方向变化与强余震发生
4
作者 李金磊 万永革 《地震工程学报》 CSCD 北大核心 2024年第2期491-500,共10页
地震的震源机制是地壳应力变化的指示器,而地壳应力变化与强震的发生直接相关。前人研究了地震震源机制变化在视应力较高的走滑型大震前的应力变化过程,而未见到震源机制变化对视应力较低的正断型大震发生的指示作用的研究。文章以2021... 地震的震源机制是地壳应力变化的指示器,而地壳应力变化与强震的发生直接相关。前人研究了地震震源机制变化在视应力较高的走滑型大震前的应力变化过程,而未见到震源机制变化对视应力较低的正断型大震发生的指示作用的研究。文章以2021年希腊克里特M W6.0正断型地震序列为例,通过计算地震序列震源机制解与区域应力场方向之间最小空间旋转角的变化,揭示应力变化与强震发生的关系。为保证震源机制解的准确性,采用多家机构确定的震源机制得到中心震源机制作为该地震的震源机制,而后采用该地震序列精确的震源机制求解当地应力场,最后计算地震震源机制与主震震源机制及与所估计的地壳应力场方向的空间旋转角随时间的变化,探索强震发生与应力场变化的关系。结果表明:在主震发生的短期内,余震震源机制与该区域应力场方向的空间旋转角较大,与其后小震级的弱地震活动对应;随后余震震源机制与应力场方向的空间旋转角减小,对应后面发生的3次M W>5.0的强余震,在此之后的长时间内余震震源机制和应力场方向的空间旋转角再次增大,对应的余震震级及频度皆明显下降。文章以2021年希腊克里特M W6.0地震序列为例,发现视应力较低的正断型地震前也存在应力方向集中现象,为探索地震应力前兆提供了范例。 展开更多
关键词 希腊克里特地震序列 震源机制中心解 构造应力场 最小空间旋转角
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部