During shaft constructing, a borehole water inflow of 30 m3/h was encountered in Liu Yuanzi Coal Mine in the southwestern Ordos Basin, whose aquifer is mainly cretaceous. On the basis of regional hydrogeological condi...During shaft constructing, a borehole water inflow of 30 m3/h was encountered in Liu Yuanzi Coal Mine in the southwestern Ordos Basin, whose aquifer is mainly cretaceous. On the basis of regional hydrogeological conditions, a mercury intrusion method and scanning electron microscope were used in this study. We conclude that the loose, porous and easily collapsible clay particles of the cretaceous aquifer rock mass were the major geological cause for water hazards during the construction of the shaft. We propose an approach of chemical grouting from the working surface and in the end succeeded in blocking the water.展开更多
The present work was conducted in the basin of Laayoun-Dakhla (South Morocco) to: 1) identify the recharge and flow characteristics of the Lower Cretaceous aquifer (LC);and 2) provide information about the mineralizat...The present work was conducted in the basin of Laayoun-Dakhla (South Morocco) to: 1) identify the recharge and flow characteristics of the Lower Cretaceous aquifer (LC);and 2) provide information about the mineralization of aquifer’s water. Isotopic and hydrochemical compositions combined with the geological and hydrogeological settings were used for this purpose. The principal changes in chemical composition of LC groundwater result from mixing with water of deeper circulation. Closer analysis of available chemical data reveals the importance of dissolution/precipitation processes in evolution of groundwater chemistry. Piezometric levels, as well as chemical and isotopic composition of groundwaters, confirm hydraulic connection between the LC and the others aquifers. Overlap of some major characteristics (δ18O, δ2H, Cl-) in this aquifer suggests that mixing processes considerably influence the hydrochemical evolution of water. The surface electrical resistivity does not indicate any freshwater-saltwater interface in the coastal aquifer and the relationship between 18O and Cl allows us to reject the hypothesis of a seawater intrusion.展开更多
基金Financial support from the National Natural Science Foundation of China (No.40772191)
文摘During shaft constructing, a borehole water inflow of 30 m3/h was encountered in Liu Yuanzi Coal Mine in the southwestern Ordos Basin, whose aquifer is mainly cretaceous. On the basis of regional hydrogeological conditions, a mercury intrusion method and scanning electron microscope were used in this study. We conclude that the loose, porous and easily collapsible clay particles of the cretaceous aquifer rock mass were the major geological cause for water hazards during the construction of the shaft. We propose an approach of chemical grouting from the working surface and in the end succeeded in blocking the water.
文摘The present work was conducted in the basin of Laayoun-Dakhla (South Morocco) to: 1) identify the recharge and flow characteristics of the Lower Cretaceous aquifer (LC);and 2) provide information about the mineralization of aquifer’s water. Isotopic and hydrochemical compositions combined with the geological and hydrogeological settings were used for this purpose. The principal changes in chemical composition of LC groundwater result from mixing with water of deeper circulation. Closer analysis of available chemical data reveals the importance of dissolution/precipitation processes in evolution of groundwater chemistry. Piezometric levels, as well as chemical and isotopic composition of groundwaters, confirm hydraulic connection between the LC and the others aquifers. Overlap of some major characteristics (δ18O, δ2H, Cl-) in this aquifer suggests that mixing processes considerably influence the hydrochemical evolution of water. The surface electrical resistivity does not indicate any freshwater-saltwater interface in the coastal aquifer and the relationship between 18O and Cl allows us to reject the hypothesis of a seawater intrusion.